首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A subgroup H of a finite group G is quasinormal in G if it permutes with every subgroup of G. A subgroup H of a finite group G is \(\mathfrak {F}_{hq}\)-supplemented in G if G has a quasinormal subgroup N such that HN is a Hall subgroup of G and \((H\cap N)H_{G}/ H_{G} \le Z_{\mathfrak {F}}(G/H_{G})\), where \(H_{G}\) is the core of H in G and \({Z}_{\mathfrak {F}} (G/H_{G})\) is the \(\mathfrak {F}\)-hypercenter of \({G/H}_{G}\). This paper concerns the structure of a finite group G under the assumption that some subgroups of G are \(\mathfrak {F}_{hq}\)-supplemented in G.  相似文献   

2.
A topological space X is countably paracompact if and only if X satisfies the condition (A): For any decreasing sequence {Fi} of non-empty closed sets with \({\bigcap_{i=1}^{\infty} F_{i} = \emptyset}\) there exists a sequence {Gi} of open sets such that \({\bigcap_{i=1}^{\infty}\overline{G_{i}}=\emptyset}\) and \({F_{i} \subset G_{i}}\) for every i. We will show, by an example, that this is not true in generalized topological spaces. In fact there is a \({\mu}\)-normal generalized topological space satisfying the analogue of A which is not even countably \({\mu}\)-metacompact. Then we study the relationships between countably \({\mu}\)-paracompactness, countably \({\mu}\)-metacompactness and the condition corresponding to condition A in generalized topological spaces.  相似文献   

3.
Mean dimension is a topological invariant for dynamical systems that is meaningful for systems with infinite dimension and infinite entropy. Given a \({\mathbb{Z}^k}\)-action on a compact metric space X, we study the following three problems closely related to mean dimension.
  1. (1)
    When is X isomorphic to the inverse limit of finite entropy systems?
     
  2. (2)
    Suppose the topological entropy \({h_{\rm top}(X)}\) is infinite. How much topological entropy can be detected if one considers X only up to a given level of accuracy? How fast does this amount of entropy grow as the level of resolution becomes finer and finer?
     
  3. (3)
    When can we embed X into the \({\mathbb{Z}^k}\)-shift on the infinite dimensional cube \({([0,1]^D)^{\mathbb{Z}^k}}\)?
     
These were investigated for \({\mathbb{Z}}\)-actions in Lindenstrauss (Inst Hautes Études Sci Publ Math 89:227–262, 1999), but the generalization to \({\mathbb{Z}^k}\) remained an open problem. When X has the marker property, in particular when X has a completely aperiodic minimal factor, we completely solve (1) and a natural interpretation of (2), and give a reasonably satisfactory answer to (3).A key ingredient is a new method to continuously partition every orbit into good pieces.  相似文献   

4.
We consider various aspects of the Segre variety \({\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}\) in PG(7, 2), whose stabilizer group \({\mathcal{G}_{\mathcal{S}}<{\rm GL}(8,2)}\) has the structure \({\mathcal{N}\rtimes{\rm Sym}(3),}\) where \({\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}\) In particular we prove that \({\mathcal{S}}\) determines a distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2)}\) such that \({A\mathcal{Z}A^{-1}=\mathcal{Z},}\) for all \({A\in\mathcal{G}_{\mathcal{S}},}\) and in consequence \({\mathcal{S}}\) determines a \({\mathcal{G}_{\mathcal{S}}}\)-invariant spread of 85 lines in PG(7, 2). Furthermore we see that Segre varieties \({\mathcal{S}_{1,1,1}(2)}\) in PG(7, 2) come along in triplets \({\{\mathcal{S},\mathcal{S}^{\prime},\mathcal{S}^{\prime\prime}\}}\) which share the same distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2).}\) We conclude by determining all fifteen \({\mathcal{G}_{\mathcal{S}}}\)-invariant polynomial functions on PG(7, 2) which have degree < 8, and their relation to the five \({\mathcal{G}_{\mathcal{S}}}\)-orbits of points in PG(7, 2).  相似文献   

5.
For any 0 < p < 2 and any natural numbers N > n, we give an explicit definition of a random operator \({S : \ell_p^n \to \mathbb{R}^N}\) such that for every 0 < r < p < 2 with r ≤ 1, the operator \({S_r = S : \ell_p^n \to \ell_r^N}\) satisfies with overwhelming probability that \({\|S_r\| \, \|(S_r)_{| {\rm Im}\, S}^{-1}\| \le C(p,r)^{n/(N-n)}}\), where C(p, r) > 0 is a real number depending only on p and r. One of the main tools that we develop is a new type of multidimensional Esseen inequality for studying small ball probabilities.  相似文献   

6.
A theorem due to Stieltjes’ states that if \({\{p_n\}_{n=0}^\infty}\) is any orthogonal sequence then, between any two consecutive zeros of p k , there is at least one zero of p n whenever k < n, a property called Stieltjes interlacing. We show that Stieltjes interlacing extends to the zeros of Gegenbauer polynomials \({C_{n+1}^{\lambda}}\) and \({C_{n-1}^{\lambda+t}}\), \({\lambda > -\frac 12}\), if 0 < tk + 1, and also to the zeros of \({C_{n+1}^{\lambda}}\) and \({C_{n-2}^{\lambda +k}}\) if \({k\in\{1,2,3\}}\). More generally, we prove that Stieltjes interlacing holds between the zeros of the kth derivative of \({C_{n}^{\lambda}}\) and the zeros of \({C_{n+1}^{\lambda}}\), \({k\in\{1,2,\dots,n-1\}}\) and we derive associated polynomials that play an analogous role to the de Boor–Saff polynomials in completing the interlacing process of the zeros.  相似文献   

7.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

8.
For completely contractive Banach algebras A and B (respectively operator algebras A and B), the necessary and sufficient conditions for the operator space projective tensor product \({A\widehat{\otimes}B}\) (respectively the Haagerup tensor product \({A\otimes^{h}B}\)) to be Arens regular are obtained. Using the non-commutative Grothendieck inequality, we show that, for C*-algebras A and B, \({A\otimes^{\gamma} B}\) is Arens regular if \({A\widehat{\otimes}B}\) and \({A\widehat{\otimes}B^{op}}\) are Arens regular whereas \({A\widehat{\otimes}B}\) is Arens regular if and only if \({A\otimes^{h}B}\) and \({B\otimes^{h}A}\) are, where \({\otimes^h}\), \({\otimes^{\gamma}}\), and \({\widehat{\otimes}}\) are the Haagerup, the Banach space projective tensor norm, and the operator space projective tensor norm, respectively.  相似文献   

9.
We describe a class of discontinuous additive functions \({a:X\to X}\) on a real topological vector space X such that \({a^n={\rm id}_X}\) and \({a({\mathcal{H}}){\setminus} {\mathcal{H}}\neq\emptyset}\) for every infinite set \({{\mathcal{H}}\subset X}\) of vectors linearly independent over \({\mathbb{Q}}\). We prove the density of the family of all such functions in the linear topological space \({{\mathcal{A}}_X}\) of all additive functions \({a:X\to X}\) with the topology induced on \({{\mathcal{A}}_X}\) by the Tychonoff topology of the space XX. Moreover, we consider additive functions \({a\in{\mathcal{A}}_X}\) satisfying \({a^n={\rm id}_X}\) and \({a({\mathcal{H}})= {\mathcal{H}}}\) for some Hamel basis \({{\mathcal{H}}}\) of X. We show that the class of all such functions is also dense in \({{\mathcal{A}}_X}\). The method is based on decomposition theorems for linear endomorphisms.  相似文献   

10.
In this paper, we study Toeplitz operators T μ from one Fock space \({F^{p}_{\alpha}}\) to another \({F^{q}_{\alpha}}\) for 1 < p, q < ∞ with positive Borel measures μ as symbols. We characterize the boundedness (and compactness) of \({T_\mu: F^{p}_{\alpha} \to F^{q}_{\alpha}}\) in terms of the averaging function \({\widehat{\mu}_r}\) and the t-Berezin transform \({\widetilde{\mu}_t}\) respectively. Quite differently from the Bergman space case, we show that T μ is bounded (or compact) from \({F^{p}_{\alpha}}\) to \({F^{q}_{\alpha}}\) for some p ≤ q if and only if T μ is bounded (or compact) from \({F^{p}_{\alpha}}\) to \({F^{q}_{\alpha}}\) for all p ≤ q. In order to prove our main results on T μ , we introduce and characterize (vanishing) (p, q)-Fock Carleson measures on C n .  相似文献   

11.
Let M be a left module for the Schur algebra S(nr), and let \({s \in \mathbb{Z}^+}\) . Then \({M^{\otimes s}}\) is a \({(S(n,\,rs), F{\mathfrak{S}_{s}})}\) -bimodule, where the symmetric group \({{\mathfrak{S}_s}}\) on s letters acts on the right by place permutations. We show that the Schur functor f rs sends \({M^{\otimes s}}\) to the \({(F{\mathfrak{S}_{rs}},F{\mathfrak{S}_s})}\) -bimodule \({F\mathfrak{S}_{rs}\otimes_{F(\mathfrak{S}_{r}\wr{\mathfrak{S}_s})} ((f_rM)^{\otimes s}\otimes_{F} F{\mathfrak{S}_s})}\) . As a corollary, we obtain the image under the Schur functor of the Lie power L s (M), exterior power \({\bigwedge^s(M)}\) of M and symmetric power S s (M).  相似文献   

12.
First, we establish necessary and sufficient conditions for embeddings of Bessel potential spaces \({H^{\sigma}X(\mathbb R^n)}\) with order of smoothness less than one, modelled upon rearrangement invariant Banach function spaces \({X(\mathbb R^n)}\), into generalized Hölder spaces. To this end, we derive a sharp estimate of modulus of smoothness of the convolution of a function \({f\in X(\mathbb R^n)}\) with the Bessel potential kernel g σ , 0 < σ < 1. Such an estimate states that if \({g_{\sigma}}\) belongs to the associate space of X, then
$\omega(f*g_{\sigma},t)\precsim \int\limits_0^{t^n}s^{\frac{\sigma}{n}-1}f^*(s)\,ds \quad {\rm for\,all} \quad t\in(0,1) \quad {\rm and\,every}\quad f\in X(\mathbb R^n).$
Second, we characterize compact subsets of generalized Hölder spaces and then we derive necessary and sufficient conditions for compact embeddings of Bessel potential spaces \({H^{\sigma}X(\mathbb R^n)}\) into generalized Hölder spaces. We apply our results to the case when \({X(\mathbb R^n)}\) is the Lorentz–Karamata space \({L_{p,q;b}(\mathbb R^n)}\). In particular, we are able to characterize optimal embeddings of Bessel potential spaces \({H^{\sigma}L_{p,q;b}(\mathbb R^n)}\) into generalized Hölder spaces and also compact embeddings of spaces in question. Applications cover both superlimiting and limiting cases.
  相似文献   

13.
Let G be a Polish locally compact group acting on a Polish space \({{X}}\) with a G-invariant probability measure \(\mu \). We factorize the integral with respect to \(\mu \) in terms of the integrals with respect to the ergodic measures on X, and show that \(\mathrm {L}^{p}({{X}},\mu )\) (\(1\le p<\infty \)) is G-equivariantly isometrically lattice isomorphic to an \({\mathrm {L}^p}\)-direct integral of the spaces \(\mathrm {L}^{p}({{X}},\lambda )\), where \(\lambda \) ranges over the ergodic measures on X. This yields a disintegration of the canonical representation of G as isometric lattice automorphisms of \(\mathrm {L}^{p}({{X}},\mu )\) as an \({\mathrm {L}^p}\)-direct integral of order indecomposable representations. If \(({{X}}^\prime ,\mu ^\prime )\) is a probability space, and, for some \(1\le q<\infty \), G acts in a strongly continuous manner on \(\mathrm {L}^{q}({{X}}^\prime ,\mu ^\prime )\) as isometric lattice automorphisms that leave the constants fixed, then G acts on \(\mathrm {L}^{p}({{X}}^{\prime },\mu ^{\prime })\) in a similar fashion for all \(1\le p<\infty \). Moreover, there exists an alternative model in which these representations originate from a continuous action of G on a compact Hausdorff space. If \(({{X}}^\prime ,\mu ^\prime )\) is separable, the representation of G on \(\mathrm {L}^p(X^\prime ,\mu ^\prime )\) can then be disintegrated into order indecomposable representations. The notions of \({\mathrm {L}^p}\)-direct integrals of Banach spaces and representations that are developed extend those in the literature.  相似文献   

14.
For a Tychonoff space X, we denote by C p (X) the space of all real-valued continuous functions on X with the topology of pointwise convergence.
In this paper we prove that:
  • If every finite power of X is Lindelöf then C p (X) is strongly sequentially separable iff X is \({\gamma}\)-set.
  • \({B_{\alpha}(X)}\) (= functions of Baire class \({\alpha}\) (\({1 < \alpha \leq \omega_1}\)) on a Tychonoff space X with the pointwise topology) is sequentially separable iff there exists a Baire isomorphism class \({\alpha}\) from a space X onto a \({\sigma}\)-set.
  • \({B_{\alpha}(X)}\) is strongly sequentially separable iff \({iw(X)=\aleph_0}\) and X is a \({Z^{\alpha}}\)-cover \({\gamma}\)-set for \({0 < \alpha \leq \omega_1}\).
  • There is a consistent example of a set of reals X such that C p (X) is strongly sequentially separable but B1(X) is not strongly sequentially separable.
  • B(X) is sequentially separable but is not strongly sequentially separable for a \({\mathfrak{b}}\)-Sierpiński set X.
  相似文献   

15.
In this paper, a complete classification is achieved of all the regular covers of the complete bipartite graphs \(K_{n,n}\) with cyclic covering transformation group, whose fibre-preserving automorphism group acts 2-arc-transitively. All these covers consist of one threefold covers of \(K_{6,6}\), one twofold cover of \(K_{12, 12}\) and one infinite family X(rp) of p-fold covers of \(K_{p^r,p^r}\) with p a prime and r an integer such that \(p^r\ge 3\). This infinite family X(rp) can be derived by a very simple and nice voltage assignment f as follows: \(X(r, p)=K_{p^r, p^r}\times _f \mathbb {Z}_p\), where \(K_{p^r, p^r}\) is a complete bipartite graph with the bipartition \(V=\{ \alpha \bigm |\alpha \in V(r,p)\}\cup \{ \alpha '\bigm |\alpha \in V(r,p)\}\) for the r-dimensional vector space V(rp) over the field of order p and \(f_{\alpha ,\beta '}=\sum _{i=1}^ra_ib_i,\,\, \mathrm{for\,\,all}\,\,\alpha =(a_i)_r, \beta =(b_i)_r\in V(r,p)\).  相似文献   

16.
We prove existence of \({u\in C^{k}(\overline{\Omega};\mathbb{R}^{n})}\) satisfying
$\left\{\begin{array}{ll} det\nabla u(x) =f(x) \, x\in \Omega\\ u(x) =x \quad\quad\quad\quad x\in\partial\Omega\end{array}\right.$
where k ≥ 1 is an integer, \({\Omega}\) is a bounded smooth domain and \({f\in C^{k}(\overline{\Omega}) }\) satisfies
$\int\limits_{\Omega}f(x) dx={\rm meas} \Omega$
with no sign hypothesis on f.
  相似文献   

17.
Besov spaces \({{\mathbf B}^s_{p,q} ({\mathbb R}^n)}\) with s > 0 can be normed in terms of the differences \({\Delta^m_h f}\) and related moduli of smoothness ω m (f, t) p , where \({0 < s < m \in {\mathbb N}}\). The paper deals with the question what happens if \({s {\uparrow} m}\) and how the outcome is related to the Sobolev spaces \({{\mathbf W}^m_p ({\mathbb R}^n)}\).  相似文献   

18.
In this paper, a new characterization is obtained for approximately dual frames of a given frame. Among other things, it is proved that if the sequence \({\Psi=(\psi_n)_n}\) is sufficiently close to the frame \({\Phi=(\varphi_n)_n}\), then \({\Psi}\) is a frame for \({\mathcal{H}}\) and approximately dual frames \({\Phi^{ad}=(\varphi^{ad}_n)_n}\) and \({\Psi^{ad}=(\psi^{ad}_n)_n}\) can be found which are close to each other and \({T_\Phi U_{\Phi^{ad}}=T_\Psi U_{\Psi^{ad}}}\), where TX and UX denote the synthesis and analysis operators of the frame X, respectively. Finally, the results are applied to Gabor systems to obtain some practical examples.  相似文献   

19.
Let \({ \mathcal {F}}\) be a saturated formation and G a finite group such that \({N_{G} (H^{\mathcal {F}})/C_{G} (H^{\mathcal {F}})\cong Inn(H^{\mathcal {F}})}\) for every subgroup H of G. If the minimal non-\({ \mathcal {F}}\)-group is soluble, then \({G \in \mathcal {F}}\).  相似文献   

20.
For a new class of g(t, x), the existence, uniqueness and stability of \({2\pi}\)-periodic solution of Duffing equation \({x'' + cx' + g(t, x) = h(t)}\) are presented. Moreover, the unique \({2\pi}\)-periodic solution is (exponentially asymptotically stable) and its rate of exponential decay c/2 is sharp. The new criterion characterizes \({g_{x}^{\prime}(t, x) - c^2/4}\) with L p -norms \({(p \in [1, \infty])}\), and the classical criterion employs the \({L^{\infty}}\)-norm. The advantage is that we can deal with the case that \({g_{x}^{\prime}(t, x) - c^2/4}\) is beyond the optimal bounds of the \({L^{\infty}}\)-norm, because of the difference between the L p -norm and the \({L^{\infty}}\)-norm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号