共查询到20条相似文献,搜索用时 0 毫秒
1.
On the asymptotic stability properties of Runge-Kutta methods for delay differential equations 总被引:5,自引:0,他引:5
Nicola Guglielmi 《Numerische Mathematik》1997,77(4):467-485
Summary. In this paper asymptotic stability properties of Runge-Kutta (R-K) methods for delay differential equations (DDEs) are considered
with respect to the following test equation: where and is a continuous real-valued function. In the last few years, stability properties of R-K methods applied to DDEs have been
studied by numerous authors who have considered regions of asymptotic stability for “any positive delay” (and thus independent
of the specific value of ).
In this work we direct attention at the dependence of stability regions on a fixed delay . In particular, natural Runge-Kutta methods for DDEs are extensively examined.
Received April 15, 1996 / Revised version received August 8, 1996 相似文献
2.
The NGP-stability of Runge-Kutta methods for systems of neutral delay differential equations 总被引:8,自引:0,他引:8
Summary. This paper deals with the stability analysis of implicit Runge-Kutta methods for the numerical solutions of the systems of
neutral delay differential equations. We focus on the behavior of such methods with respect to the linear test equations where ,L, M and N are complex matrices. We show that an implicit Runge-Kutta method is NGP-stable if and only if it is A-stable.
Received February 10, 1997 / Revised version received January 5, 1998 相似文献
3.
S. Maset 《Numerische Mathematik》2000,87(2):355-371
Summary. This paper investigates the stability of Runge-Kutta methods when they are applied to the complex linear scalar delay differential equation . This kind of stability is called stability. We give a characterization of stable Runge-Kutta methods and then we prove that implicit Euler method is stable. Received November 3, 1998 / Revised version received March 23, 1999 / Published online July 12, 2000 相似文献
4.
Asymptotic stability analysis of Runge-Kutta methods for nonlinear systems of delay differential equations 总被引:24,自引:0,他引:24
M. Zennaro 《Numerische Mathematik》1997,77(4):549-563
Summary. We consider systems of delay differential equations (DDEs) of the form with the initial condition . Recently, Torelli [10] introduced a concept of stability for numerical methods applied to dissipative nonlinear systems
of DDEs (in some inner product norm), namely RN-stability, which is the straighforward generalization of the wellknown concept of BN-stability of numerical methods with respect to
dissipative systems of ODEs. Dissipativity means that the solutions and corresponding to different initial functions and , respectively, satisfy the inequality , and is guaranteed by suitable conditions on the Lipschitz constants of the right-hand side function . A numerical method is said to be RN-stable if it preserves this contractivity property. After showing that, under slightly
more stringent hypotheses on the Lipschitz constants and on the delay function , the solutions and are such that , in this paper we prove that RN-stable continuous Runge-Kutta methods preserve also this asymptotic stability property.
Received March 29, 1996 / Revised version received August 12, 1996 相似文献
5.
Bernhard A. Schmitt 《BIT Numerical Mathematics》1988,28(4):884-897
Under the assumption that an implicit Runge-Kutta method satisfies a certain stability estimate for linear systems with constant coefficientsl
2-stability for nonlinear systems is proved. This assumption is weaker than algebraic stability since it is satisfied for many methods which are not evenA-stable. Some local smoothness in the right hand side of the differential equation is needed, but it may have a Jacobian and higher derivatives with large norms. The result is applied to a system derived from a strongly nonlinear parabolic equation by the method of lines. 相似文献
6.
A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations 总被引:22,自引:0,他引:22
K. J. In 't Hout 《BIT Numerical Mathematics》1992,32(4):634-649
This paper deals with adapting Runge-Kutta methods to differential equations with a lagging argument. A new interpolation procedure is introduced which leads to numerical processes that satisfy an important asymptotic stability condition related to the class of testproblemsU(t)=U(t)+U(t–) with , C, Re()<–||, and >0. Ifc
i
denotes theith abscissa of a given Runge-Kutta method, then in thenth stept
n–1t
n
:=t
n–1+h of the numerical process our interpolation procedure computes an approximation toU(t
n–1+c
i
h–) from approximations that have already been generated by the process at pointst
j–1+c
i
h(j=1,2,3,...). For two of these new processes and a standard process we shall consider the convergence behaviour in an actual application to a given, stiff problem. 相似文献
7.
Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations 总被引:3,自引:0,他引:3
Runge-Kutta methods are studied when applied to stiff differential equations containing a small stiffness parameter . The coefficients in the expansion of the global error in powers of are the global errors of the Runge-Kutta method applied to a differential algebraic system. A study of these errors and of the remainder of the expansion yields sharp error bounds for the stiff problem. Numerical experiments confirm the results. 相似文献
8.
T. Koto 《BIT Numerical Mathematics》1998,38(4):737-750
P-stability is an analogous stability property toA-stability with respect to delay differential equations. It is defined by using a scalar test equation similar to the usual
test equation ofA-stability. EveryP-stable method isA-stable, but anA-stable method is not necessarilyP-stable. We considerP-stability of Runge-Kutta (RK) methods and its variation which was originally introduced for multistep methods by Bickart,
and derive a sufficient condition for an RK method to have the stability properties on the basis of an algebraic characterization
ofA-stable RK methods recently obtained by Schere and Müller. By making use of the condition we clarify stability properties
of some SIRK and SDIRK methods, which are easier to implement than fully implicit methods, applied to delay differential equations. 相似文献
9.
Summary This paper deals with the stability analysis of step-by-step methods for the numerical solution of delay differential equations. We focus on the behaviour of such methods when they are applied to the linear testproblemU(t)=U(t)+U(t–) with >0 and , complex. A general theorem is presented which can be used to obtain complete characterizations of the stability regions of these methods. 相似文献
10.
Toshiyuki Koto 《Numerische Mathematik》1998,79(4):569-580
Recently, we have proved that the Radau IA and Lobatto IIIC methods are P-stable, i.e., they have an analogous stability property to A-stability with respect to scalar delay differential equations (DDEs). In this paper, we study stability of those methods
applied to multidimensional DDEs. We show that they have a similar property to P-stability with respect to multidimensional equations which satisfy certain conditions for asymptotic stability of the zero
solutions. The conditions are closely related to stability criteria for DDEs considered in systems theory.
Received October 8, 1996 / Revised version received February 21, 1997 相似文献
11.
The theory of positive real functions is used to provide bounds for the largest possible disk to be inscribed in the stability region of an explicit Runge-Kutta method. In particular, we show that the closed disk |+r| r can be contained in the stability region of an explicitm-stage Runge-Kutta method of order two if and only ifr m – 1. 相似文献
12.
We describe an adaptive mesh refinement finite element method-of-lines procedure for solving one-dimensional parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise hierarchical polynomial basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A modified SIRK formulation eliminates a linear systems solution that is required by the traditional SIRK formulation and leads to a new reduced-order interpolation formula. Stability and temporal error estimation techniques allow acceptance of approximate solutions at intermediate stages, yielding increased efficiency when solving partial differential equations. A priori energy estimates of the local discretization error are obtained for a nonlinear scalar problem. A posteriori estimates of local spatial discretization errors, obtained by order variation, are used with the a priori error estimates to control the adaptive mesh refinement strategy. Computational results suggest convergence of the a posteriori error estimate to the exact discretization error and verify the utility of the adaptive technique.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR-90-0194; the U.S. Army Research Office under Contract Number DAAL 03-91-G-0215; by the National Science Foundation under Grant Number CDA-8805910; and by a grant from the Committee on Research, Tulane University. 相似文献
13.
This paper is concerned with exponential mean square stability of the classical stochastic theta method and the so called split-step theta method for stochastic systems. First, we consider linear autonomous systems. Under a sufficient and necessary condition for exponential mean square stability of the exact solution, it is proved that the two classes of theta methods with θ≥0.5 are exponentially mean square stable for all positive step sizes and the methods with θ<0.5 are stable for some small step sizes. Then, we study the stability of the methods for nonlinear non-autonomous systems. Under a coupled condition on the drift and diffusion coefficients, it is proved that the split-step theta method with θ>0.5 still unconditionally preserves the exponential mean square stability of the underlying systems, but the stochastic theta method does not have this property. Finally, we consider stochastic differential equations with jumps. Some similar results are derived. 相似文献
14.
15.
The asymptotic stability of one-parameter methods for neutral differential equations 总被引:20,自引:0,他引:20
This paper deals with the asymptotic stability of theoretical solutions and numerical methods for systems of neutral differential equationsx=Ax(t–)+Bx(t)+Cx(t–), whereA, B, andC are constant complexN ×N matrices, and >0. A necessary and sufficient condition such that the differential equations are asymptotically stable is derived. We also focus on the numerical stability properties of adaptations of one-parameter methods. Further, we investigate carefully the characterization of the stability region. 相似文献
16.
In this paper we present a new condition under which the systems of equations arising in the application of an implicit Runge-Kutta method to a stiff initial value problem, has unique solutions. We show that our condition is weaker than related conditions presented previously. It is proved that the Lobatto IIIC methods fulfil the new condition. 相似文献
17.
Many systems of ordinary differential equations are quadratic: the derivative can be expressed as a quadratic function of the dependent variable. We demonstrate that this feature can be exploited in the numerical solution by Runge-Kutta methods, since the quadratic structure serves to decrease the number of order conditions. We discuss issues related to construction design and implementation and present a number of new methods of Runge-Kutta and Runge-Kutta-Nyström type that display superior behaviour when applied to quadratic ordinary differential equations. 相似文献
18.
T. Koto 《BIT Numerical Mathematics》1997,37(4):870-884
Recently Bellen, Jackiewicz and Zennaro have studied stability properties of Runge-Kutta (RK) methods for neutral delay differential
equations using a scalar test equation. In particular, they have shown that everyA-stable collocation method isNP-stable, i.e., the method has an analogous stability property toA-stability with respect to the test equation. Consequently, the Gauss, Radau IIA and Lobatto IIIA methods areNP-stable.
In this paper, we examine the stability of RK methods based on classical quadrature by a slightly different approach from
theirs. As a result, we prove that the Radau IA and Lobatto IIIC methods equipped with suitable continuous extensions are
alsoNP-stable by virtue of fundamental notions related to those methods such as simplifying conditions, algebraic stability, and
theW-transformation. 相似文献
19.
Summary For the numerical solution of non-stiff semi-explicit differentialalgebraic equations (DAEs) of index 1 half-explicit Runge-Kutta methods (HERK) are considered that combine an explicit Runge-Kutta method for the differential part with a simplified Newton method for the (approximate) solution of the algebraic part of the DAE. Two principles for the choice of the initial guesses and the number of Newton steps at each stage are given that allow to construct HERK of the same order as the underlying explicit Runge-Kutta method. Numerical tests illustrate the efficiency of these methods. 相似文献
20.
S. Maset 《Numerische Mathematik》2002,90(3):555-562
Summary. This paper investigates the stability of Runge-Kutta methods when they are applied to the complex linear system of delay
differential equations , where . We prove that no Runge-Kutta method preserves asymptotic stability.
Received January 24, 2000 / Revised version received July 19, 2000 / Published online June 7, 2001 相似文献