首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. coli ribonucleotide reductase (RNR) catalyzes the production of deoxynucleotides using complex radical chemistry. Active RNR is composed of a 1:1 complex of two subunits: alpha2 and beta2. Alpha2 binds nucleoside diphosphate substrates and deoxynucleotide/ATP allosteric effectors and is the site of nucleotide reduction. Beta2 contains the stable diiron tyrosyl radical (Y122.) cofactor that initiates deoxynucleotide formation. This process is proposed to involve reversible radical transfer over >35 A between the Y122 in beta2 and C439 in the active site of alpha2. A docking model of alpha2beta2, based on structures of the individual subunits, suggests that radical initiation involves a pathway of transient, aromatic amino acid radical intermediates, including Y730 and Y731 in alpha2. In this study the function of residues Y730 and Y731 is investigated by their site-specific replacement with 3-aminotyrosine (NH2Y). Using the in vivo suppressor tRNA/aminoacyl-tRNA synthetase method, Y730NH2Y-alpha2 and Y731NH2Y-alpha2 have been generated with high fidelity in yields of 4-6 mg/g of cell paste. These mutants have been examined by stopped flow UV-vis and EPR spectroscopies in the presence of beta2, CDP, and ATP. The results reveal formation of an NH2Y radical (NH2Y730. or NH2Y731.) in a kinetically competent fashion. Activity assays demonstrate that both NH2Y-alpha2s make deoxynucleotides. These results show that the NH2Y. can oxidize C439 suggesting a hydrogen atom transfer mechanism for the radical propagation pathway within alpha2. The observed NH2Y. may constitute the first detection of an amino acid radical intermediate in the proposed radical propagation pathway during turnover.  相似文献   

2.
The Escherichia coli ribonucleotide reductase (RNR), composed of two subunits (R1 and R2), catalyzes the conversion of nucleotides to deoxynucleotides. Substrate reduction requires that a tyrosyl radical (Y(122)*) in R2 generate a transient cysteinyl radical (C(439)*) in R1 through a pathway thought to involve amino acid radical intermediates [Y(122)* --> W(48) --> Y(356) within R2 to Y(731) --> Y(730) --> C(439) within R1]. To study this radical propagation process, we have synthesized R2 semisynthetically using intein technology and replaced Y(356) with a variety of fluorinated tyrosine analogues (2,3-F(2)Y, 3,5-F(2)Y, 2,3,5-F(3)Y, 2,3,6-F(3)Y, and F(4)Y) that have been described and characterized in the accompanying paper. These fluorinated tyrosine derivatives have potentials that vary from -50 to +270 mV relative to tyrosine over the accessible pH range for RNR and pK(a)s that range from 5.6 to 7.8. The pH rate profiles of deoxynucleotide production by these F(n)()Y(356)-R2s are reported. The results suggest that the rate-determining step can be changed from a physical step to the radical propagation step by altering the reduction potential of Y(356)* using these analogues. As the difference in potential of the F(n)()Y* relative to Y* becomes >80 mV, the activity of RNR becomes inhibited, and by 200 mV, RNR activity is no longer detectable. These studies support the model that Y(356) is a redox-active amino acid on the radical-propagation pathway. On the basis of our previous studies with 3-NO(2)Y(356)-R2, we assume that 2,3,5-F(3)Y(356), 2,3,6-F(3)Y(356), and F(4)Y(356)-R2s are all deprotonated at pH > 7.5. We show that they all efficiently initiate nucleotide reduction. If this assumption is correct, then a hydrogen-bonding pathway between W(48) and Y(356) of R2 and Y(731) of R1 does not play a central role in triggering radical initiation nor is hydrogen-atom transfer between these residues obligatory for radical propagation.  相似文献   

3.
Escherichia coli class I ribonucleotide reductase catalyzes the conversion of ribonucleotides to deoxyribonucleotides and consists of two subunits: R1 and R2. R1 possesses the active site, while R2 harbors the essential diferric-tyrosyl radical (Y*) cofactor. The Y* on R2 is proposed to generate a transient thiyl radical on R1, 35 A distant, through amino acid radical intermediates. To study the putative long-range proton-coupled electron transfer (PCET), R2 (375 residues) was prepared semisynthetically using intein technology. Y356, a putative intermediate in the pathway, was replaced with 2,3-difluorotyrosine (F2Y, pKa = 7.8). pH rate profiles (pH 6.5-9.0) of wild-type and F2Y-R2 were very similar. Thus, a proton can be lost from the putative PCET pathway without affecting nucleotide reduction. The current model involving H* transfer is thus unlikely.  相似文献   

4.
The mechanism of radical transport in the alpha2 (R1) subunit of class I E. coli ribonucleotide reductase (RNR) has been investigated by the phototriggered generation of a tyrosyl radical, *Y356, on a 20-mer peptide bound to alpha2. This peptide, Y-R2C19, is identical to the C-terminal peptide tail of the beta2 (R2) subunit and is a known competitive inhibitor of binding of the native beta2 protein to alpha2. *Y356 radical initiation is prompted by excitation (lambda >or= 300 nm) of a proximal anthraquinone, Anq, or benzophenone, BPA, chromophore on the peptide. Transient absorption spectroscopy has been employed to kinetically characterize the radical-producing step by time resolving the semiquinone anion (Anq*-), ketyl radical (*-BPA), and Y* photoproducts on (i) BPA-Y and Anq-Y dipeptides and (ii) BPA/Anq-Y-R2C19 peptides. Light-initiated, single-turnover assays have been carried out with the peptide/alpha2 complex in the presence of [14C]-labeled cytidine 5'-diphosphate substrate and ATP allosteric effector. We show that both the Anq- and BPA-containing peptides are competent in deoxycytidine diphosphate formation and turnover occurs via Y731 to Y730 to C439 pathway-dependent radical transport in alpha2. Experiments with the Y730F mutant exclude a direct superexchange mechanism between C439 and Y731 and are consistent with a PCET model for radical transport in which there is a unidirectional transport of the electron and proton transport among residues of alpha2.  相似文献   

5.
E. coli ribonucleotide reductase (RNR), composed of the homodimeric subunits alpha2 and beta2, catalyzes the conversion of nucleotides to deoxynucleotides via complex radical chemistry. The radical initiation process involves a putative proton-coupled electron transfer (PCET) pathway over 35 A between alpha2 and beta2. Y356 in beta2 has been proposed to lie on this pathway. To test this model, intein technology has been used to make beta2 semi-synthetically in which Y356 is replaced with a DOPA-amino acid. Analysis of this mutant with alpha2 and various combinations of substrate and effector by SF UV-vis spectroscopy and EPR methods demonstrates formation of a DOPA radical concomitant with disappearance of the tyrosyl radical, which initiates the reaction. The results reveal that Y356 lies on the PCET pathway and demonstrate the first kinetically competent conformational changes prior to ET. They further show that substrate binding brings about rapid conformational changes which place the complex into its active form(s) and suggest that the RNR complex is asymmetric.  相似文献   

6.
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides using a diferric tyrosyl radical (Y(122)(?)) cofactor in β2 to initiate catalysis in α2. Each turnover requires reversible long-range proton-coupled electron transfer (PCET) over 35 ? between the two subunits by a specific pathway (Y(122)(?) ? [W(48)?] ? Y(356) within β to Y(731) ? Y(730) ? C(439) within α). Previously, we reported that a β2 mutant with 3-nitrotyrosyl radical (NO(2)Y(?); 1.2 radicals/β2) in place of Y(122)(?) in the presence of α2, CDP, and ATP catalyzes formation of 0.6 equiv of dCDP and accumulates 0.6 equiv of a new Y(?) proposed to be located on Y(356) in β2. We now report three independent methods that establish that Y(356) is the predominant location (85-90%) of the radical, with the remaining 10-15% delocalized onto Y(731) and Y(730) in α2. Pulsed electron-electron double-resonance spectroscopy on samples prepared by rapid freeze quench (RFQ) methods identified three distances: 30 ± 0.4 ? (88% ± 3%) and 33 ± 0.4 and 38 ± 0.5 ? (12% ± 3%) indicative of NO(2)Y(122)(?)-Y(356)(?), NO(2)Y(122)(?)-NO(2)Y(122)(?), and NO(2)Y(122)(?)-Y(731(730))(?), respectively. Radical distribution in α2 was supported by RFQ electron paramagnetic resonance (EPR) studies using Y(731)(3,5-F(2)Y) or Y(730)(3,5-F(2)Y)-α2, which revealed F(2)Y(?), studies using globally incorporated [β-(2)H(2)]Y-α2, and analysis using parameters obtained from 140 GHz EPR spectroscopy. The amount of Y(?) delocalized in α2 from these two studies varied from 6% to 15%. The studies together give the first insight into the relative redox potentials of the three transient Y(?) radicals in the PCET pathway and their conformations.  相似文献   

7.
Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to 2'-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C(439)) in α2 by a stable diferric tyrosyl radical (Y(122)?) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 ? through a specific pathway of residues: Y(122)?→ W(48)→ Y(356) in β2 to Y(731)→ Y(730)→ C(439) in α2. To study the details of this process, 3-aminotyrosine (NH(2)Y) has been site-specifically incorporated in place of Y(356) of β. The resulting protein, Y(356)NH(2)Y-β2, and the previously generated proteins Y(731)NH(2)Y-α2 and Y(730)NH(2)Y-α2 (NH(2)Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s(-1). Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH(2)Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH(2)Y?) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH(2)Y? formation is biphasic (k(fast) of 9-46 s(-1) and k(slow) of 1.5-5.0 s(-1)) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH(2)Y? formation, while the k(cat) of ~0.5 s(-1) is proposed to be associated with rate-limiting oxidation by NH(2)Y? of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y(730)NH(2)Y-α2 and Y(731)NH(2)Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.  相似文献   

8.
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides and requires a diferric-tyrosyl radical (Y(?)) cofactor to initiate catalysis. The initiation process requires long-range proton-coupled electron transfer (PCET) over 35 ? between the two subunits by a specific pathway (Y(122)(?)→W(48)→Y(356) within β to Y(731)→Y(730)→C(439) within α). The rate-limiting step in nucleotide reduction is the conformational gating of the PCET process, which masks the chemistry of radical propagation. 3-Nitrotyrosine (NO(2)Y) has recently been incorporated site-specifically in place of Y(122) in β2. The protein as isolated contained a diferric cluster but no nitrotyrosyl radical (NO(2)Y(?)) and was inactive. In the present paper we show that incubation of apo-Y(122)NO(2)Y-β2 with Fe(2+) and O(2) generates a diferric-NO(2)Y(?) that has a half-life of 40 s at 25 °C. Sequential mixing experiments, in which the cofactor is assembled to 1.2 NO(2)Y(?)/β2 and then mixed with α2, CDP, and ATP, have been analyzed by stopped-flow absorption spectroscopy, rapid freeze quench EPR spectroscopy, and rapid chemical quench methods. These studies have, for the first time, unmasked the conformational gating. They reveal that the NO(2)Y(?) is reduced to the nitrotyrosinate with biphasic kinetics (283 and 67 s(-1)), that dCDP is produced at 107 s(-1), and that a new Y(?) is produced at 97 s(-1). Studies with pathway mutants suggest that the new Y(?) is predominantly located at 356 in β2. In consideration of these data and the crystal structure of Y(122)NO(2)Y-β2, a mechanism for PCET uncoupling in NO(2)Y(?)-RNR is proposed.  相似文献   

9.
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides providing the monomeric precursors required for DNA replication and repair. The class I RNRs are composed of two homodimeric subunits: R1 and R2. R1 has the active site where nucleotide reduction occurs, and R2 contains the diiron tyrosyl radical (Y*) cofactor essential for radical initiation on R1. Mechanism-based inhibitors, such as 2'-azido-2'-deoxyuridine-5'-diphosphate (N(3)UDP), have provided much insight into the reduction mechanism. N(3)UDP is a stoichiometric inactivator that, upon interaction with RNR, results in loss of the Y* in R2 and formation of a nitrogen-centered radical (N*) covalently attached to C225 (R-S-N*-X) in the active site of R1. N(2) is lost prior to N* formation, and after its formation, stoichiometric amounts of 2-methylene-3-furanone, pyrophosphate, and uracil are also generated. On the basis of the hyperfine interactions associated with N*, it was proposed that N* is also covalently attached to the nucleotide through either the oxygen of the 3'-OH (R-S-N*-O-R') or the 3'-C (R-S-N*-C-OH). To distinguish between the proposed structures, the inactivation was carried out with 3'-[(17)O]-N(3)UDP and N* was examined by 9 and 140 GHz EPR spectroscopy. Broadening of the N* signal was detected and the spectrum simulated to obtain the [(17)O] hyperfine tensor. DFT calculations were employed to determine which structures are in best agreement with the simulated hyperfine tensor and our previous ESEEM data. The results are most consistent with the R-S-N*-C-OH structure and provide evidence for the trapping of a 3'-ketonucleotide in the reduction process.  相似文献   

10.
Spectroscopic and electronic structure studies of the class I Escherichia coli ribonucleotide reductase (RNR) intermediate X and three computationally derived model complexes are presented, compared, and evaluated to determine the electronic and geometric structure of the FeIII-FeIV active site of intermediate X. Rapid freeze-quench (RFQ) EPR, absorption, and MCD were used to trap intermediate X in R2 wild-type (WT) and two variants, W48A and Y122F/Y356F. RFQ-EPR spin quantitation was used to determine the relative contributions of intermediate X and radicals present, while RFQ-MCD was used to specifically probe the FeIII/FeIV active site, which displayed three FeIV d-d transitions between 16,700 and 22,600 cm(-1), two FeIV d-d spin-flip transitions between 23,500 and 24,300 cm(-1), and five oxo to FeIV and FeIII charge transfer (CT) transitions between 25,000 and 32,000 cm(-1). The FeIV d-d transitions were perturbed in the two variants, confirming that all three d-d transitions derive from the d-pi manifold. Furthermore, the FeIV d-pi splittings in the WT are too large to correlate with a bis-mu-oxo structure. The assignment of the FeIV d-d transitions in WT intermediate X best correlates with a bridged mu-oxo/mu-hydroxo [FeIII(mu-O)(mu-OH)FeIV] structure. The mu-oxo/mu-hydroxo core structure provides an important sigma/pi superexchange pathway, which is not present in the bis-mu-oxo structure, to promote facile electron transfer from Y122 to the remote FeIV through the bent oxo bridge, thereby generating the tyrosyl radical for catalysis.  相似文献   

11.
Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates (NDPs) to deoxynucleoside diphosphates (dNDPs). This RNR is composed of two homodimeric subunits: R1 and R2. R1 binds the NDPs in the active site, and R2 harbors the essential di-iron tyrosyl radical (Y*) cofactor. In this paper, we used PELDOR, a method that detects weak electron-electron dipolar coupling, to make the first direct measurement of the distance between the two Y*'s on each monomer of R2. In the crystal structure of R2, the Y*'s are reduced to tyrosines, and consequently R2 is inactive. In R2, where the Y*'s assume a well-defined geometry with respect to the protein backbone, the PELDOR method allows measurement of a distance of 33.1 +/- 0.2 A that compares favorably to the distance (32.4 A) between the center of mass of the spin density distribution of each Y* on each R2 monomer from the structure. The experiments provide the first direct experimental evidence for two Y*'s in a single R2 in solution.  相似文献   

12.
[reaction: see text] Spontaneous self-associations of various tricyclic phenalenyl radicals lead reversibly to either pi- or sigma-dimers, depending on alkyl-substitution patterns at the alpha- and beta-positions. Thus, the sterically encumbered all-beta-substituted tri-tert-butylphenalenyl radical (2*) affords only the long-bonded pi-dimer in dichloromethane solutions, under conditions in which the parent phenalenyl radical (1*) leads to only the sigma-dimer. Further encumbrances of 1* with a pair of alpha, beta- or beta, beta- tert-butyl substituents and additional methyl and ethyl groups (as in sterically hindered phenalenyl radicals 3* - 6*) do not inhibit sigma-dimerization. ESR spectroscopy is successfully employed to monitor the formation of both diamagnetic (2-electron) dimers; and UV-vis spectroscopy specifically identifies the pi-dimer by its intense near-IR band. The different temperature-dependent spectral (ESR and UV-vis) behaviors of these phenalenyl radicals allow the quantitative evaluation of the bond enthalpy of 12 +/- 2 kcal mol(-1) for sigma-dimers, in which the unusually low value has been theoretically accounted for by the large loss of phenalenyl (aromatic) pi-resonance energy attendant upon such bond formation.  相似文献   

13.
An aniline-based amino acid provides a powerful mechanistic probe for redox-active tyrosines, affording a general method for elucidating the sequence of proton and electron transfer events during side-chain oxidation in biological systems. Intein technology allows Y356 to be site-specifically replaced with p-aminophenylalanine (PheNH2) on the R2 subunit of the class I ribonucleotide reductase. Analysis of the pH rate profile of Y356PheNH2-R2 strongly suggests that the mechanism of long-distance intrasubunit radical transfer through position 356 proceeds with electron transfer prior to proton transfer. In addition, we propose that radical transfer through position 356 only becomes rate-limiting upon raising the reduction potential of the residue at that location and is not affected by protonation state of either the ground state or oxidized amino acid.  相似文献   

14.
An interstitial hydroxyl radical (HO*) has been generated in bulk amorphous SiO2 (a-SiO2) loaded with interstitial H2O molecules and exposed to F2 laser light (hnu = 7.9 eV, lambda = 157 nm) at 77 K. F2 laser light dissociates an O-H bond of interstitial H2O into a pair of hydrogen atom (H0) and HO*. The resultant H0 disappears below 150 K, whereas HO* is detectable after thermal annealing at 200 K. The electron paramagnetic resonance (EPR) signal of the interstitial HO* recorded at 77 K is similar to that formed in amorphous ice, indicating that HO* is confined in an orthorhombic field by hydrogen bonding, probably with adjacent H2O molecules, silanol (SiOH) groups, and bridging oxygen atoms in the a-SiO2 network.  相似文献   

15.
The ESR spectrum of the chain-end radical RCF2CF2* detected in Nafion perfluorinated membranes exposed to the photo-Fenton reagent was accurately simulated by an automatic fitting procedure, using as input the hyperfine coupling tensors of the two F alpha and two F beta nuclei as well as the corresponding directions of the principal values from density functional theory (DFT) calculations. An accurate fit was obtained only for different orientations of the hyperfine coupling tensors for the two F alpha nuclei, indicating a nonplanar structure about the C alpha radical center. The fitted isotropic hyperfine splittings for the two F beta nuclei in the Nafion radical, 24.9 and 27.5 G, are significantly larger than those for the chain-end radical in Teflon (15 G), implying different radical conformations in the two systems. The excellent fit indicated that the geometry and electronic structure of free radicals can be obtained not only from single-crystal ESR spectroscopy, but also, in certain cases, from powder spectra, by combination with data from DFT calculations. The optimized structures obtained by DFT calculations for the CF3CF2CF2CF2* or CF3OCF2CF2* radicals as models provided additional support for the pyramidal structure determined from the spectral fit. Comparison and analysis of calculated and fitted values for the hyperfine splittings of the two F beta nuclei suggested that the radical detected by ESR in Nafion is ROCF2CF2*, which originates from attack of oxygen radicals on the Nafion side chain. The combination of spectrum fitting and DFT is considered important in terms of understanding the hyperfine splittings from 19F nuclei and the different conformations of fluorinated chain-end-type radicals RCF2CF2* in different systems, and also for elucidating the mechanism of Nafion fragmentation when exposed to oxygen radicals in fuel cell conditions.  相似文献   

16.
The optimal environment charge configurations are predicted for the tautomerization of complementary base pairs into their corresponding rare forms, and vice versa. Results indicate that cations approaching the N3 guanine site may induce tautomerization of the normal guanine—cytosine (G---C) base pair into its rare form. The reverse process requires that the cation approach the O2 thymine site of the rare adenine*—thymine* pair (A*---31T*) or the O6 guanine site of rare guanine*—cytosine* base pair (G*---C*). Possible mutagenic and antimutagenic roles of metal cations approaching base pairs are also discussed.  相似文献   

17.
Class Ia ribonucleotide reductase subunit R2 contains a diiron active site. In this paper, active-site models for the intermediate X-Trp48(?+) and X-Tyr122(?), the active Fe(III)Fe(III)-Tyr122(?), and the met Fe(III)Fe(III) states of Escherichia coli R2 are studied, using broken-symmetry density functional theory incorporated with the conductor-like screening solvation model. Different structural isomers and different protonation states have been explored. Calculated geometric, energetic, Mo?ssbauer, hyperfine, and redox properties are compared with available experimental data. Feasible detailed structures of these intermediate and active states are proposed. Asp84 and Trp48 are most likely the main contributing residues to the result that the transient Fe(IV)Fe(IV) state is not observed in wild-type class Ia E. coli R2. Asp84 is proposed to serve as a proton-transfer conduit between the diiron cluster and Tyr122 in both the tyrosine radical activation pathway and the first steps of the catalytic proton-coupled electron-transfer pathway. Proton-coupled and simple redox potential calculations show that the kinetic control of proton transfer to Tyr122(?) plays a critical role in preventing reduction from the active Fe(III)Fe(III)-Tyr122(?) state to the met state, which is potentially the reason why Tyr122(?) in the active state can be stable over a very long period.  相似文献   

18.
[reaction: see text] Theoretical calculations of carbon-oxygen bond dissociation enthalpies in substituted methylperoxyl radicals (YCH(2)OO*) reveal that bond strengths are not governed solely by the stability of YCH2* radicals but are largely affected by hyperconjugation when Y is electron-donating or conjugating. In many cases, this hyperconjugative effect is greater than stabilization of the methyl radical by Y. All electron-withdrawing Y exert small destabilizing effects via inductive withdrawal of electrons from the polarized C-OO* bond.  相似文献   

19.
High-level ab initio calculations have been used to study the mechanism for the inactivation of diol dehydratase (DDH) by glycolaldehyde or 2-chloroacetaldehyde. As in the case of the catalytic substrates of DDH, e.g., ethane-1,2-diol, the 5'-deoxyadenosyl radical (Ado*) is able to abstract a hydrogen atom from both substrate analogues in the initial step on the reaction pathway, as evidenced by comparable energy barriers. However, in subsequent step(s), each substrate analogue produces the highly stable glycolaldehyde radical. The barrier for hydrogen atom reabstraction by the glycolaldehyde radical is calculated to be too high ( approximately 110 kJ mol-1) to allow Ado* to be regenerated and recombine with the cob(II)alamin radical, the latter therefore remaining tightly bound to DDH. As a consequence, the catalytic pathway is disrupted, and DDH becomes an impotent enzyme. Interconversion of equivalent structures of the glycolaldehyde radical via the symmetrical cis-ethanesemidione radical is calculated to require 38 kJ mol-1. EPR indications of a symmetrical cis-ethanesemidione structure are likely to be the result of formation of an equilibrium mixture of glycolaldehyde radical structures, this equilibration being facilitated by partial deprotonation of the glycolaldehyde radical by the carboxylate of an amino acid residue within the active site of DDH.  相似文献   

20.
The outcome of O2 activation at the diiron(II) cluster in the R2 subunit of Escherichia coli (class I) ribonucleotide reductase has been rationally altered from the normal tyrosyl radical (Y122*) production to self-hydroxylation of a phenylalanine side-chain by two amino acid substitutions that leave intact the (histidine)2-(carboxylate)4 ligand set characteristic of the diiron-carboxylate family. Iron ligand Asp (D) 84 was replaced with Glu (E), the amino acid found in the cognate position of the structurally similar diiron-carboxylate protein, methane monooxygenase hydroxylase (MMOH). We previously showed that this substitution allows accumulation of a mu-1,2-peroxodiiron(III) intermediate, which does not accumulate in the wild-type (wt) protein and is probably a structural homologue of intermediate P (H(peroxo)) in O2 activation by MMOH. In addition, the near-surface residue Trp (W) 48 was replaced with Phe (F), blocking transfer of the "extra" electron that occurs in wt R2 during formation of the formally Fe(III)Fe(IV) cluster X. Decay of the mu-1,2-peroxodiiron(III) complex in R2-W48F/D84E gives an initial brown product, which contains very little Y122* and which converts very slowly (t1/2 approximately 7 h) upon incubation at 0 degrees C to an intensely purple final product. X-ray crystallographic analysis of the purple product indicates that F208 has undergone epsilon-hydroxylation and the resulting phenol has shifted significantly to become a ligand to Fe2 of the diiron cluster. Resonance Raman (RR) spectra of the purple product generated with 16O2 or 18O2 show appropriate isotopic sensitivity in bands assigned to O-phenyl and Fe-O-phenyl vibrational modes, confirming that the oxygen of the Fe(III)-phenolate species is derived from O2. Chemical analysis, experiments involving interception of the hydroxylating intermediate with exogenous reductant, and M?ssbauer and EXAFS characterization of the brown and purple species establish that F208 hydroxylation occurs during decay of the peroxo complex and formation of the initial brown product. The slow transition to the purple Fe(III)-phenolate species is ascribed to a ligand rearrangement in which mu-O2- is lost and the F208-derived phenolate coordinates. The reprogramming to F208 monooxygenase requires both amino acid substitutions, as very little epsilon-hydroxyphenylalanine is formed and pathways leading to Y122* formation predominate in both R2-D84E and R2-W48F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号