首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang CJ  Gao F  Liang G 《Organic letters》2008,10(21):4711-4714
The racemic TF-BIPHAM was resolved for the first time, and the effectiveness of the resolved diamine was demonstrated by highly enantioselective hydrogenation of alpha-aryl enamides and alpha-dehydroamino acid esters using readily accessible bis(aminophosphine) ligands.  相似文献   

2.
Although asymmetric C−H functionalization has been available for the synthesis of structurally diverse molecules, catalytic dynamic kinetic resolution (DKR) approaches to change racemic stereogenic axes remain synthetic challenges in this field. Here, a concise palladium-catalyzed DKR was combined with C−H functionalization involving olefination and alkynylation for the highly efficient synthesis of non-biaryl-atropisomer-type (NBA) axially chiral oragnosilanes. The chemistry proceeded through two different and distinct DKR: first, an atroposelective C−H olefination or alkynylation produced axially chiral vinylsilanes or alkynylsilanes as a new family of non-biaryl atropisomers (NBA), and second, the extension of this DKR strategy to twofold o,o′-C−H functionalization led to the multifunctional axially chiral organosilicon compounds with up to >99 % ee.  相似文献   

3.
A new procedure for the dynamic kinetic resolution (DKR) of racemic alcohols into single enantiomers is described. This procedure employs surfactant-treated subtilisin as an (S)-selective resolving catalyst and an aminocyclopentadienylruthenium complex as a racemizing catalyst. The DKR is performed best in the presence of an acyl donor such as trifluoroethyl butyrate in THF at room temperature. Eight simple secondary alcohols have been efficiently resolved with high optical purities and good yields. The subtilisin-based DKR is complementary in stereoselectivity to its lipase-based counterpart. For an acyl-carrying alcohol, both subtilisin- and lipase-based DKRs have proceeded equally well to give a pair of enantiomeric products (>99.5% ee each) with opposite optical rotations in high yields (94-95%).  相似文献   

4.
Catalytic dynamic kinetic resolution (DKR) of racemic azlactones with EtOD using squaramide-based dimeric cinchona alkaloid organocatalysts is shown to be a highly effective strategy for the preparation of enantiomerically pure α-deuterated chiral α-amino acids.  相似文献   

5.
The enantioselective synthesis of α-thiocarboxylic acids by biocatalytic dynamic kinetic resolution (DKR) of nitrile precursors exploiting nitrilase enzymes is described. A panel of 35 nitrilase biocatalysts were screened and enzymes Nit27 and Nit34 were found to catalyse the DKR of racemic α-thionitriles under mild conditions, affording the corresponding carboxylic acids with high conversions and good-to-excellent ee. The ammonia produced in situ during the biocatalytic transformation favours the racemization of the nitrile enantiomers and, in turn, the DKR without the need of any external additive base.  相似文献   

6.
Natural lipases typically recognize enantiomers of alcohols based on the size differences of substituents near the carbinol moiety and selectively react with the R enantiomers of secondary alcohols. Therefore, lipase-catalyzed dynamic kinetic resolution (DKR) of racemic secondary alcohols produces only R enantiomers. We report herein a method for obtaining S enantiomers by DKR of secondary 3-(trialkylsilyl)propargyl alcohols by using a well-known R-selective Pseudomonas fluorescens lipase in combination with a racemization catalyst VMPS4, in which the silyl group reverses the size relationship of substituents near the carbinol moiety. We have already reported R-selective DKR of the corresponding propargyl alcohols without substituents on the ethynyl terminal carbon, and the presence of an easily removable silyl group has enabled us to produce both enantiomers of propargyl alcohols in high chemical yields and with high enantiomeric excess. In addition, immobilization of the lipase on Celite was found to be important for achieving a high efficiency of the DKR.  相似文献   

7.
Structurally simple and inexpensive chiral tridentate ligands were employed for substantially advancing the purely chemical dynamic kinetic resolution (DKR) of unprotected racemic tailor‐made α‐amino acids (TM‐α‐AAs), enabling the first DKR of TM‐α‐AAs bearing tertiary alkyl chains as well as multiple unprotected functional groups. Owing to the operationally convenient conditions, virtually complete stereoselectivity, and full recyclability of the source of chirality, this method should find wide applications for the preparation of TM‐α‐AAs, especially on large scale.  相似文献   

8.
The asymmetric hydrogenation of the conformationally flexible racemic α-substituted acyclic dialkyl ketones via dynamic kinetic resolution (DKR) has been developed by using Ru-SDPs/diamine catalysts. Chiral alcohols were produced in high yields with good to excellent enantioselectivities (85%–97% ee) and diastereoselectivities (up to 97:3). This hydrogenation reaction provided a new approach to the synthesis of the key intermediate of J-104118.  相似文献   

9.
酶-过渡金属配合物催化的动态动力学拆分研究进展   总被引:4,自引:1,他引:4  
张占辉  刘庆彬 《有机化学》2005,25(7):780-787
动态动力学拆分是合成具有光学活性化合物最方便和最有效的方法之一. 酶和金属配合物的结合扩展了这个方法的使用范围, 该方法的主要特征是用酶催化拆分和金属催化原位外消旋化未反应的底物, 克服了经典动力学拆分最高产率只有50%的缺陷. 概述了近几年这方面的研究进展.  相似文献   

10.
Because of the importance of developing stereoselective syntheses for single enantiomers, a selected panel of racemic biologically active 1-aryl- and 1-heteroarylpropan-2-amines has been prepared, followed by a study of their behavior in enzymatic kinetic resolution (KR) processes. For this purpose, lipase B from Candida antarctica (CAL-B) proved to be an ideal biocatalyst allowing the preparation of the corresponding enantioenriched (R)-amides and (S)-amines by aminolysis reactions. Likewise, dynamic kinetic resolutions (DKR) have been successfully achieved combining the use of CAL-B and Shvo's catalyst. This research constitutes the first example of a lipase-catalyzed DKR process of β-substituted isopropylamines.  相似文献   

11.
The dynamic kinetic resolution (DKR) of racemic α-chloro β-ketoesters and α-chloro β-ketophosphonates through ruthenium-mediated asymmetric hydrogenation is reported. The corresponding α-chloro β-hydroxyesters and α-chloro β-hydroxyphosphonates were obtained in good to high enantio- and diastereomeric excesses using, in particular, the atropisomeric ligand DIFLUORPHOS. This methodology allowed an efficient preparation of the anti phenylisoserine side chain of Taxotere® which has been used for the hemisynthesis of the cancer therapeutic agent itself. In addition, 13C NMR in chiral oriented solvents was used to investigate the DKR effect.  相似文献   

12.
Bifunctional urea-based cinchona alkaloid derivatives have been shown to promote highly efficient DKR reactions of azalactones using an alcohol nucleophile. The optimum catalyst is remarkably insensitive to the steric bulk of the amino acid residue, allowing alanine-, methionine-, and phenylalanine-derived azalactones to undergo DKR with unprecedented levels of enantioselectivity using a synthetic catalyst. The first DKR of these substrates by thiols and the highly enantioselective desymmetrization of a meso-glutaric anhydride by thiolysis are also reported.  相似文献   

13.
The direct chemo-enzymatic DKR of racemic beta-haloalcohols is reported, yielding the corresponding optically active epoxides in a single step. The mutant haloalcohol dehalogenase HheC Cys153Ser Trp249Phe is used for the asymmetric ring closure, whereas racemization of the remaining enantiomer of the haloalcohol is achieved using the new iridacycle 3, one of the most effective racemization catalysts to date for beta-haloalcohols.  相似文献   

14.
Reported herein is the first purely chemical method for the dynamic kinetic resolution (DKR) of unprotected racemic α‐amino acids (α‐AAs), a method which can rival the economic efficiency of the enzymatic reactions. The DKR reaction principle can be readily applied for S/R interconversions of α‐AAs, the methodological versatility of which is unmatched by biocatalytic approaches. The presented process features a virtually complete stereochemical outcome, fully recyclable source of chirality, and operationally simple and convenient reaction conditions, thus allowing its ready scalability. A quite unique and novel mode of the thermodynamic control over the stereochemical outcome, including an exciting interplay between axial, helical, and central elements of chirality is proposed.  相似文献   

15.
Concentration-independent high enantioselectivity in the dynamic kinetic resolution (DKR) of racemic azlactones affording chiral α-aminoesters has been achieved using self-association free thiourea-based dimeric cinchona alkaloid organocatalysts. Detailed experimental studies and single crystal X-ray analysis confirmed that these bifunctional organocatalysts I do not form H-bonded self-aggregates in either solution or solid state.  相似文献   

16.
The palladium-catalyzed allylic alkylation of KSAc and KSBz with racemic cyclic and acyclic allylic esters by using N,N'-(1R,2R)-1,2-cyclohexandiylbis[2-(diphenylphosphino)-benzamide] as ligand frequently gave the corresponding allylic thioesters with high ee values and yields. The reaction of the cyclic allylic carbonates with KSAc in the presence of H(2)O was accompanied by a partial palladium-catalyzed enantioselective "hydrolysis" of the substrates with formation of the corresponding enantioenriched allylic alcohols. The degree of the "hydrolysis" was strongly dependent on the solvent and the thiocarboxylate ion. Highly selective kinetic resolutions (KRs) were observed in the palladium-catalyzed reaction of the racemic cyclohexenyl and cycloheptenyl acetates with KSAc. While the KR of the cyclohexenyl acetate is characterized by a selectivity factor S = 72 +/- 19, that of the cycloheptenyl acetate afforded (R)-cycloheptenyl acetate of >or=99% ee in 48% yield and (S)-cycloheptenyl thioacetate of 98% ee in 50% yield. The palladium-catalyzed reaction of the racemic cyclopentenyl acetate with KSAc showed a strong "memory effect" (ME), that is, both enantiomers reacted with different enantioselectivities. The ME was probed by studying the palladium-catalyzed reactions of both the matched acetate of >or=99% ee and the mismatched acetate of >or=99% ee with KSAc. The acetates not only reacted with different enantioselectivities and rates but also suffered an unexpected and concomitant palladium-catalyzed racemization in the presence of the chiral ligand. This led in the case of the mismatched acetate to a temporary dynamic kinetic resolution (DKR) that featured a racemization of the mismatched acetate by the chiral catalyst. Studies of the palladium-catalyzed reaction of the racemic cyclopentenyl acetate, carbonate, and naphthoate with KSAc in the presence of the chiral ligand also showed the ME to be strongly dependent on the nucleofuge. This also allowed the synthesis of (S)-cyclopentenyl thioacetate of 92% ee in high yield from the racemic cyclopentenyl naphthoate.  相似文献   

17.
New DKR type: An N-heterocyclic carbene (NHC)-catalyzed dynamic kinetic resolution of racemic α-substituted β-keto esters has been developed. This method relies on the epimerization of an NHC-enol intermediate before subsequent aldol/acylation events. Highly substituted β-lactones are produced in good yield with good to excellent selectivities (see scheme).  相似文献   

18.
The isolation of single stereoisomers from a racemic (or diastereomeric) mixture by enzymatic or chemical resolution techniques goes in hand with the disposal of 50% (racemate) or more (diastereomeric mixtures) of the "undesired" substrate isomer(s). In order to circumvent this drawback, dynamic systems have been developed for the de-racemization of enantiomers and the de-epimerizations of diastereomers. Key strategies within this area are discussed and are classified according to their underlying kinetics, that is, dynamic kinetic resolution (DKR), dynamic kinetic asymmetric transformations (DYKAT), and hybrids between both of them. Finally, two novel types of DYKAT are defined.  相似文献   

19.
Wang Yajun  Zhang Yawen 《中国化学》2010,28(7):1267-1271
β‐Cyano‐α‐oxoesters were found to undergo asymmetric aldol addition reaction with acetone in the presence of 10 mol% of L‐proline. With the racemic starting material, dynamic kinetic resolution (DKR) was achieved in quantitative yields with good diastreroselectivity of up to 85:15 dr and excellent ee up to 99% for the major diastereomer.  相似文献   

20.
A highly enantioselective Michael addition of alpha-substituted cyanoacetates to vinyl ketones was accomplished in the presence of simple bifunctional thiourea/tertiary amine organocatalysts. A number of alpha-aryl or alkyl cyanoacetates have been successfully applied to give multifunctional compounds with an all-carbon-substituted quaternary stereocenter in excellent enantioselectivities (82-97 % ee) and yields (61-99 %). The optical pure adducts could be smoothly converted to variously structured beta(2,2)-amino acid esters. Moreover, an interesting reaction model involving multiple hydrogen-bonding interactions amongst the thiourea/tertiary amine catalyst and the reactants has been proposed based on the absolute configuration of the adduct and computational studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号