首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
综述了国内外真空中高功率微波(HPM)下介质窗表面击穿问题的研究现状和进展。在介质窗表面击穿实验研究方面,介绍了国外最具代表性的研究成果,给出了介质窗材料表面及内部的破坏发展规律,并提出相应的理论模型。在理论仿真方面,重点介绍了国外在运用蒙特卡罗(Monte Carlo)程序和PIC模型对认识HPM下介质窗表面倍增放电机理上做出的突出贡献,给出了HPM下介质窗表面电子在不同影响因素下的运行状态,并提出了一个理论模型,从本质上解释了倍增电子数目和表面静电场以微波频率的2倍振荡的原因。介绍了目前几种可有效抑制介质窗表面微波击穿的技术手段。  相似文献   

2.
综述了国内外真空中高功率微波(HPM)下介质窗表面击穿问题的研究现状和进展。在介质窗表面击穿实验研究方面,介绍了国外最具代表性的研究成果,给出了介质窗材料表面及内部的破坏发展规律,并提出相应的理论模型。在理论仿真方面,重点介绍了国外在运用蒙特卡罗(Monte Carlo)程序和PIC模型对认识HPM下介质窗表面倍增放电机理上做出的突出贡献,给出了HPM下介质窗表面电子在不同影响因素下的运行状态,并提出了一个理论模型,从本质上解释了倍增电子数目和表面静电场以微波频率的2倍振荡的原因。介绍了目前几种可有效抑制介质窗表面微波击穿的技术手段。  相似文献   

3.
介质表面高功率微波击穿的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
蔡利兵  王建国 《物理学报》2009,58(5):3268-3273
研究了用于模拟高功率微波条件下介质表面击穿的静电PIC-MCC模型,并通过自行编写的数值模拟程序模拟了真空及不同气压条件下介质表面击穿过程中的次级电子倍增和气体电离等过程.模拟结果发现,在真空及低气压条件下,电子的主要来源是次级电子倍增,电子数量以两倍于入射场的频率振荡;在高气压情况下,电子的主要来源是气体电离. 关键词: 介质表面击穿 高功率微波 数值模拟 次级电子倍增  相似文献   

4.
介绍了用于模拟介质表面高功率微波击穿的粒子模拟-蒙特卡罗碰撞方法,并采用该方法模拟研究了氩气环境不同气压下的介质表面高功率微波击穿过程,获得了该击穿过程中粒子数量和电子平均能量的时间变化图像,并得到了击穿延迟时间。数值模拟结果发现:在低气压下,次级电子倍增的作用比较明显,但电子数量在次级电子倍增饱和后的增速较低,击穿延迟时间较长;随着气压的升高,次级电子倍增的影响逐渐变小,气体电离逐渐占主导地位,击穿延迟时间逐渐变短;在高气压下,由于介质表面吸收沉积电子而呈负电性,次级电子倍增消失,击穿延迟时间由气体碰撞电离来决定。  相似文献   

5.
蔡利兵  王建国 《物理学报》2011,60(2):25217-025217
建立了一个简单的高功率微波(HPM)介质表面击穿释气模型,并采用PIC(partiele-in-cell)-MCC(Monte Carlo collisions)方法,通过自行编写的介质表面击穿数值模拟程序对不同释气条件下的介质表面HPM击穿过程进行了数值模拟研究,得到了击穿过程中电子数量等的时间图像和不同释气速度下的击穿延迟时间.模拟结果表明,对于具有一定时间宽度的HPM脉冲,当介质表面气体脱附速度较小时,由于介质表面气体层形成太慢而不会发生击穿;只有当脱附速度大于一定值时,击穿才会发生且击穿延迟时间在一定范围内随着脱附速度的增加而缩短.最后,将数值模拟得到的介质表面HPM击穿数据,与单极性表面击穿的实验诊断图像进行了对比,两者的发展趋势符合很好. 关键词: 释气现象 介质表面击穿 高功率微波 数值模拟  相似文献   

6.
为深入研究高功率微波(HPM)作用下介质窗沿面击穿破坏的物理机制,探索提高闪络场强阈值的方法和途径,开展了介质窗表面矩形刻槽抑制电子倍增的理论与试验研究。首先根据动力学方程建立了介质窗表面电子倍增模型并分析了介质窗槽内电子运动轨迹,考虑了矩形槽结构对表面微波电场的影响,理论分析表明在闪络击穿的起始和发展阶段矩形槽可有效抑制电子倍增。在S波段(2.86 GHz,脉宽1 s)下开展了介质窗表面矩形刻槽的击穿破坏试验,试验结果发现表面矩形刻槽可大幅度提高微波传输功率,在槽深(1.0 mm)一定时不同的刻槽宽度(0.5 mm和1.0 mm)对应的微波功率抑制范围不同。采用PIC-MC仿真模拟槽内倍增电子的时空演化,仿真结果很好地验证了试验现象。  相似文献   

7.
为深入研究高功率微波(HPM)作用下介质窗沿面击穿破坏的物理机制,探索提高闪络场强阈值的方法和途径,开展了介质窗表面矩形刻槽抑制电子倍增的理论与试验研究。首先根据动力学方程建立了介质窗表面电子倍增模型并分析了介质窗槽内电子运动轨迹,考虑了矩形槽结构对表面微波电场的影响,理论分析表明在闪络击穿的起始和发展阶段矩形槽可有效抑制电子倍增。在S波段(2.86 GHz,脉宽1μs)下开展了介质窗表面矩形刻槽的击穿破坏试验,试验结果发现表面矩形刻槽可大幅度提高微波传输功率,在槽深(1.0mm)一定时不同的刻槽宽度(0.5 mm和1.0 mm)对应的微波功率抑制范围不同。采用PIC-MC仿真模拟槽内倍增电子的时空演化,仿真结果很好地验证了试验现象。  相似文献   

8.
为了开展高功率微波(HPM)馈源输出窗介质击穿实验研究,设计了一种组合型X波段高功率微波(HPM)喇叭馈源击穿实验装置。装置采用变张角喇叭与可移动介质输出窗组合的结构,通过调节变张角喇叭口面与输出窗间的距离,使得介质输出窗内表面电场强度可调。数值模拟结果表明:在满足馈源喇叭驻波比小于1.15,E面和H面基本等化的情况下,当调节变张角喇叭口面与介质输出窗距离在0~400 mm范围内变化时,HPM馈源输出窗上的电场强度变化为32.6~87.0 kV·cm-1,满足了在真空度3×10-3 Pa、脉冲宽度20 ns条件下,HPM介质击穿对电场强度变化的要求。根据数值模拟结果,设计加工了HPM介质击穿实验装置,并成功地应用于GW级HPM馈源输出窗介质击穿实验研究。  相似文献   

9.
X波段馈源输出窗高功率微波击穿实验装置   总被引:1,自引:0,他引:1       下载免费PDF全文
为了开展高功率微波(HPM)馈源输出窗介质击穿实验研究,设计了一种组合型X波段高功率微波(HPM)喇叭馈源击穿实验装置。装置采用变张角喇叭与可移动介质输出窗组合的结构,通过调节变张角喇叭口面与输出窗间的距离,使得介质输出窗内表面电场强度可调。数值模拟结果表明:在满足馈源喇叭驻波比小于1.15,E面和H面基本等化的情况下,当调节变张角喇叭口面与介质输出窗距离在0~400 mm范围内变化时,HPM馈源输出窗上的电场强度变化为32.6~87.0 kV.cm-1,满足了在真空度3×10-3Pa、脉冲宽度20 ns条件下,HPM介质击穿对电场强度变化的要求。根据数值模拟结果,设计加工了HPM介质击穿实验装置,并成功地应用于GW级HPM馈源输出窗介质击穿实验研究。  相似文献   

10.
周前红  董烨  董志伟  周海京 《物理学报》2015,64(8):85201-085201
将麦克斯韦方程组和简化等离子体方程耦合求解, 对介质表面附近大气击穿形成等离子体的过程进行了理论研究. 分别使用一维、二维模型对等离子体的形成过程及等离子体对电磁波的反射、吸收过程进行了模拟研究. 一维计算结果发现在ne = 0, j = 0两种边界条件下, 虽然形成的等离子体密度分布相差较大, 但二者得到的微波反射、吸收、透射波形彼此相差不大. 初始电子数密度厚度为20 mm的条件下, 得到界面附近的等离子体密度大于5 mm厚度的情况. 二维计算结果发现, 由于TE10模在波导中心位置处的微波电场最强, 电子碰撞电离首先在中心位置处形成等离子体, 当等离子体密度达到一定值(临界密度附近)时, 波导中心介质表面处微波场强减小, 等离子体区域沿着介质表面向两侧移动. TE10模在波导边缘处微波电场强度小于击穿阈值, 因此等离子体区域不可能移动到波导边缘附近.  相似文献   

11.
释气对介质沿面闪络击穿影响的粒子模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
董烨  董志伟  周前红  杨温渊  周海京 《物理学报》2014,63(2):27901-027901
为研究释气下的高功率微波介质沿面闪络击穿物理机制,首先建立了理论模型,包括:动力学方程、粒子模拟算法、次级电子发射、蒙特卡罗碰撞模型以及碰撞退吸附气体分子模型;其次,基于理论模型,编制了1D3V PIC-MCC程序,分别研究了弱退吸附、强退吸附以及释气分子运动速率对沿面闪络击穿的影响.研究结果表明:介质沿面闪络击穿本质是沉积功率的持续增加.弱退吸附下,次级电子倍增占优,随着退吸附系数的增加,碰撞电离效应对次级电子倍增有促进作用,主要表现为介质窗表面静电场、表面碰撞电子平均能量以及表面碰撞电子数目的增加,此处的表面碰撞电子主要是次级电子倍增形成的;释气分子运动速率高导致介质面附近气压下降,不利于次级电子与气体分子间碰撞电离过程形成.强退吸附下,气体碰撞电离效应占优,随着退吸附系数的增加,离子数增加速度表现为电离频率增加的指数增长形式,碰撞电离效应对次级电子倍增有抑制作用,主要表现为介质窗表面静电场为负、表面碰撞电子平均能量的降低,但是表面碰撞电子数目却得以增加,此处的表面碰撞电子主要是贴近介质面的气体碰撞电离形成的;释气分子运动速率高导致气体厚度增加,扩大了气体碰撞电离作用区域,有利于气体碰撞电离.  相似文献   

12.
为研究高功率微波及材料特性参数对介质沿面闪络击穿过程的影响,采用自编的1D3V PIC-MCC程序,通过粒子模拟手段,得到了电子与离子数目、电子及离子密度分布、空间电荷场时空分布、电子平均能量、放电功率、表面沉积功率、激发电离损耗功率、电离频率等重要物理量。结果表明:电离频率随场强增加而增加,达到饱和后缓慢下降,强场诱发的二次电子数目更多导致本底沉积功率增高;电离频率随频率减小而增加,达到饱和后缓慢下降,频率太高会抑制次级电子倍增;因此,低频强场下击穿压力较大;反射引发表面电场下降及磁场增加效应,降低表面场强虽使表面击穿压力下降,但磁场的增加会导致二次电子倍增起振时间缩短,且会增加器件内部击穿风险;圆极化相对线极化诱导二次电子数目更多、本底沉积功率更高,击穿风险增加;短脉冲产生电子、离子总数少,平均能量低,沉积功率低,击穿风险低于长脉冲;脉冲上升时间的缩短和延长,只会提前或推后击穿时间,并不会改善击穿压力;材料二次电子发射率的增加会给击穿造成巨大压力,表面光滑度对击穿过程影响不大;电离频率和电子平均能量随释气压强增加均先增加后减小,低气压二次电子倍增占优,高气压碰撞电离占优。  相似文献   

13.
针对高功率微波介质沿面闪络击穿物理过程,首先建立了理论模型,包括:动力学方程、粒子模拟算法、二次电子发射, 以及电子与气体分子蒙特卡罗碰撞模型、电子碰撞介质表面退吸附气体分子机制;其次,基于理论模型,编制了1D3V PIC-MCC程序,分别针对真空二次电子倍增、高气压体电离击穿和低气压面电离击穿过程,运用该程序仔细研究了电子和离子随时间演化关系、电子运动轨迹、电子及离子密度分布、空间电荷场时空分布、电子平均能量、碰撞电子平均能量、碰撞电子数目随时间演化关系、电子能量分布函数、平均二次电子发射率以及能量转换关系。研究结果表明:真空二次电子倍增引发的介质表面沉积功率只能达到入射微波功率1%左右的水平,不足以击穿;气体碰撞电离主导的高气压体电离击穿,是由低能电子(eV量级)数目指数增长到一定程度导致的,形成位置远离介质表面,形成时间为s量级;低气压下的介质沿面闪络击穿,是在二次电子倍增和气体碰撞电离共同作用下,由于数目持续增长的高能电子(keV量级)碰撞介质沿面导致沉积功率激增而引发的,形成位置贴近介质沿面,形成时间在ns量级。  相似文献   

14.
 研制了一套宽光谱探测系统,该系统包括紫外成像探测器和X射线成像探测器两个工作单元。利用该系统对高功率微波(HPM)源运行及聚四氟乙烯介质窗受微波场作用而发生击穿时实验环境中的紫外线和X射线进行了初步诊断。结果表明:HPM源运行参数为重复频率100 Hz,运行时间5 s,介质窗未发生击穿时,微波源二极管区产生的X射线剂量为9.28×102~1.64×103 Gy,介质窗发生击穿时,环境中X射线剂量为5.38×102~1.09×103 Gy;随着微波脉冲重复频率和运行时间的增加,产生的X射线剂量明显增加。此外,利用该系统证实了实验环境中紫外线的存在。  相似文献   

15.
研制了一套宽光谱探测系统,该系统包括紫外成像探测器和X射线成像探测器两个工作单元。利用该系统对高功率微波(HPM)源运行及聚四氟乙烯介质窗受微波场作用而发生击穿时实验环境中的紫外线和X射线进行了初步诊断。结果表明:HPM源运行参数为重复频率100 Hz,运行时间5 s,介质窗未发生击穿时,微波源二极管区产生的X射线剂量为9.28×102~1.64×103 Gy,介质窗发生击穿时,环境中X射线剂量为5.38×102~1.09×103 Gy;随着微波脉冲重复频率和运行时间的增加,产生的X射线剂量明显增加。此外,利用该系统证实了实验环境中紫外线的存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号