首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of patterning of the indium-tin oxide (ITO) film on the glass substrate with high repetition rate picosecond lasers at various wavelengths are presented. Laser radiation initiated the ablation of the material, forming grooves in ITO. Profile of the grooves was analyzed with a phase contrast optical microscope, a stylus type profiler, scanning electron microscope (SEM) and atomic force microscope (AFM). Clean removal of the ITO film was achieved with the 266 nm radiation when laser fluence was above the threshold at 0.20 J/cm2, while for the 355 nm radiation, the threshold was higher, above 0.46 J/cm2. The glass substrate was damaged in the area where the fluence was higher than 1.55 J/cm2. The 532 nm radiation allowed getting well defined grooves, but a lot of residues in the form of dust were generated on the surface. UV radiation with the 266 nm wavelength provided the widest working window for ITO ablation without damage of the substrate. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the process.  相似文献   

2.
We investigate the ablation of SiO x thin films on fused silica substrates using single-pulse exposures at 193 nm and 248 nm. Two ablation modes are considered: front side (the surface of a film is irradiated from above) and rear side (a film is irradiated through its supporting substrate). Fluence is varied from below 200 mJ/cm2 to above 3 J/cm2. SiO x films of thickness 200 nm, 400 nm, and 600 nm are ablated. In the case of rear-side illumination, at moderate fluences (around 0.5 mJ/cm2) the ablation depth corresponds roughly to the film thickness, above 1 J/cm2 part of the substrate is ablated as well. In the case of front-side ablation the single-pulse ablation depth is limited for all film thicknesses to less than 200 nm even at fluences up to 4 J/cm2. Experimental results are discussed in relation to film thickness, fluence, and ablation mode. Simple numerical calculations are performed to clarify the influence of heat transport on the ablation process.  相似文献   

3.
This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm2 to an optimized single pulse fluence of 4.5 J/cm2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. PACS 79.20.Ds; 42.62.Cf; 42.55.Lc  相似文献   

4.
We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying xy axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.  相似文献   

5.
Europium-doped yttrium oxide (Y2O3:Eu) thin films were successfully deposited on quartz and ITO/glass substrates by excimer-laser-assisted metal organic deposition (ELAMOD) at low temperatures. The effects of laser wavelength and thermal temperature on the films’ crystallinity and photoluminescence properties were investigated. Films irradiated by an ArF laser at 80 mJ/cm2 and 400–500°C were highly crystallized compared with those prepared by thermal MOD. In contrast, when the film was irradiated by a KrF laser at 500°C, no crystalline Y2O3:Eu was formed. The Y2O3:Eu film irradiated by the ArF laser at 80 mJ/cm2 and 500°C showed typical PL spectra of Eu3+ ions with cubic symmetry and a 5D07F2 transition at ∼612 nm. The PL intensity at 612 nm was much higher for the film prepared with ELAMOD than for that prepared by the thermal-assisted process, and the photoemission intensity of the film prepared with ELAMOD strongly depended on the substrate material.  相似文献   

6.
BiFeO3(BFO) thin films of about 200 nm in thickness have been successfully grown on oxide bottom electrode, LaNiO3(LNO), via pulsed laser ablation. X-ray diffraction spectrum of the as-deposited BFO film reveals a (100) preferred textured structure. The morphology of the BFO film is found to be strongly dependent on oxygen partial pressure in laser ablation. A saturated hysteresis loop with remanent polarization of 42 μC/cm2 and coercive field of 100 kV/cm is obtained at the film deposition at 50 mTorr. The dielectric properties have also been obtained based on the influence of the oxygen pressure.  相似文献   

7.
In this paper, the feasibility of Ti film coated on glass substrate scribed via a 532 nm picosecond laser is investigated. Laser irradiations from the film side and from the transparent substrate side are performed for comparison. Optical microscopy, SEM, surface stylus and contact resistance measurement reveal that the Ti film can be completely removed with no damage to the glass substrate, using optimized process parameters. The complete removal threshold for the film for front-side scribing is found at 120 mJ/cm2, while the minimum laser fluence for complete scribing is 70 mJ/cm2 in the case of back-side scribing. The lines scribed from the front side exhibit obvious thermal effects such as heat affected zones, burr and micro cracks. Back-side scribing exhibits non-thermal behavior, which also can increase the process speed for the scribing of a Ti film on glass to 1000 mm/s. This makes the back-side laser scribing of Ti film a promising technique.  相似文献   

8.
The influence of laser fluence on the properties of thin films of tantalum oxide is studied in this paper, varying the laser fluence from 5.7 to 8.3 J/cm2. Thin films of tantalum oxide were deposited on glass substrates using pulsed-laser ablation technique. X-ray diffraction studies confirm the amorphous/nanocrystalline nature of all the films irrespective of the laser fluence. The Tauc plot analysis suggests that tantalum oxide is an indirect band gap material, whose band gap decreases with increase in laser fluence. The refractive index of the films is found to decrease with increase in laser fluence but the extinction coefficient of the films increases with increase in laser fluence. Fourier transform infrared studies suggest the use of tantalum oxide thin films as oxygen sensors. Micro-Raman analysis reveals the sensitiveness of Ta-O-Ta and Ta-O vibration modes to laser fluence. Among all the films, the film deposited at a laser fluence of 7 J/cm2 is found to be superior in quality.  相似文献   

9.
Amino ion implantation was carried out at the energy of 80 keV with fluence of 5 × 1015 ions cm−2 for indium tin oxide film (ITO) coated glass, and the existence of amino group on the ITO surface was verified by X-ray photoelectron spectroscopy analysis and Fourier transform infrared spectra. Scanning electron microscopy images show that multi-wall carbon nanotubes (MWCNTs) directly attached to the amino ion implanted ITO (NH2/ITO) surface homogeneously and stably. The resulting MWCNTs-attached NH2/ITO (MWCNTs/NH2/ITO) substrate can be used as electrode material. Cyclic voltammetry results indicate that the MWCNTs/NH2/ITO electrode shows excellent electrochemical properties and obvious electrocatalytic activity towards uric acid, thus this material is expected to have potential in electrochemical analysis and biosensors.  相似文献   

10.
The single-shot ablation threshold and incubation coefficient of copper were investigated using an amplified near-infrared, femtosecond Ti:sapphire laser. To date, the near-infrared femtosecond ablation threshold of copper has been reported in the range of several hundred millijoules per cm2 based primarily on multiple shot ablation studies. A careful study of the single shot ablation threshold for copper was carried out yielding an incident single-shot ablation threshold of (1.06±0.12) J/cm2 for a clean copper foil surface. This was determined by measuring the diameters of the ablation spots as a function of the laser pulse energy using scanning electron microscopy for spatially Gaussian laser spots. When multiple shots were taken on the same spot, a reduction in ablation threshold was observed, consistent with a multiple shot incubation coefficient of 0.76±0.02. Similar experiments on 250 nm and 500 nm copper thin films sputtered on a silicon substrate demonstrated that scaling the threshold values with the absorbance of energy at the surface yields a consistent absorbed fluence threshold for copper of (59±10) mJ/cm2. This absorbed threshold value is consistent with the expected value from a two-temperature model for the heating of copper with an electron-lattice coupling constant of g=1017 Wm-3 K-1. Single-shot rippling of the surface in the threshold ablation intensity regime was also observed for the foil target but not for the smooth thin film target. PACS 61.80.Ba; 61.82.Bg  相似文献   

11.
Ca0.997Pr0.002TiO3 (CPTO) thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition (ELAMOD) process with a KrF laser at a fluence of 100 mJ/cm2, a pulse duration of 26 ns, and a repetition rate of 20 Hz at 100°C in air. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide (ITO) glasses. The crystallinity of the CPTO films depended on the substrates; the films were well grown on the borosilicate and ITO glasses compared to the silica glass. To elucidate the key factors for the crystallization of the CPTO films in this process, we carried out numerical simulations for the temperature variation at the laser irradiation, using a heat diffusion equation, and compared the experimental data with thermal simulations. According to the results, we have shown that a large optical absorbance of the film and a small thermal conductivity of the substrate provide effective annealing time and temperature for the crystallization of the CPTO films, and polycrystalline intermediate layer which has a large optical absorption such as the ITO also plays a key role for the nucleation of the CPTO crystals in the ELAMOD process.  相似文献   

12.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

13.
Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE has been applied for deposition of fullerenes for the first time and we have studied the growth of thin films of solid C60. The fragmentation of C60 fullerene molecules induced by ns ablation in vacuum of a frozen anisole target with C60 was investigated by matrix-assisted laser desorption/ionization (MALDI). Our findings show that intact fullerene films can be produced with laser fluences ranging from 0.15 J/cm2 up to 1.5 J/cm2.  相似文献   

14.
High speed patterning of a 30 nm thick Aluminium thin film on a flexible Polyethylene Terephthalate substrate was demonstrated with the aid of Computer Generated Holograms (CGH׳s) applied to a phase only Spatial Light Modulator. Low fluence picosecond laser pulses minimise thermal damage to the sensitive substrate and thus clean, single and multi-beam, front side thin film removal is achieved with good edge quality. Interestingly, rear side ablation shows significant Al film delamination. Measured front and rear side ablation thresholds were Fth=0.20±0.01 J cm−2 and Fth=0.15±0.01 J cm−2 respectively. With laser repetition rate of 200 kHz and 8 diffractive spots, a film removal rate of R>0.5 cm2 s−1 was demonstrated during patterning with a fixed CGH and 5 W average laser power. The effective laser repetition rate was feff~1.3 MHz. The application of 30 stored CGH׳s switching up to 10 Hz was also synchronised with motion control, allowing dynamic large area multi-beam patterning which however, slows micro-fabrication.  相似文献   

15.
Laser cleaning of a photoresist (PR) on a glass substrate using ns-pulsed Nd:YAG laser was studied. The direction of the substrate facing the laser beam was varied as a main parameter as well as the power of the laser beam. The backward irradiation (BWI) of the third harmonic beam (355 nm) completely removed 1.2 μm thick PR layer with three pulses at 1.5 J/cm2 leaving no residues behind; while the forward irradiation (FWI) at the same condition just partially cleaned it. To investigate the difference of removal mechanisms between irradiation directions, the size distributions of particulates generated during laser cleaning were observed using an optical particle counter. The concentration of micron-sized particulates increased with increasing laser fluence up to 1 J/cm2 for FWI and 0.5 J/cm2 for BWI and then decreased at higher fluences because the target was a very thin film. The concentration of larger particulates for BWI was much higher than that for FWI implying the difference in removal mechanisms. In consideration of the size characteristics of the particulates and the temperature profiles of the PR layer, the most probable distinct mechanism for the BWI would be a blasting due to high temperature at the PR/glass interface. The particulate number concentration decreased rapidly after the completion of cleaning, suggesting that the measurement of the particulate concentration could detect the progress of the cleaning. Our results demonstrated that the backward irradiation will be useful for the laser cleaning of film-type contaminants on an optically transparent substrate.  相似文献   

16.
Laser dry etching by a laser driven direct writing apparatus has been extensively used for the micro- and nano-patterning on the solid surface. The purpose of this study is to pattern the PEDOT:PSS thin film coated on the soda-lime glass substrates by a nano-second pulsed ultraviolet laser processing system. The patterned PEDOT:PSS film structure provides the electrical isolation and prevents the electrical contact from each region for capacitive touch screens. The surface morphology, geometric dimension, and edge quality of ablated area after the variety of laser patternings were measured by a 3D confocal laser scanning microscope. After the single pulse laser irradiation, the ablation threshold of the PEDOT:PSS film conducted by the nano-second pulsed UV laser was determined to be 0.135±0.003 J/cm2. The single pulse laser interacted region and the ablated line depth increased with increasing the laser fluence. Moreover, the inner line width of ablated PEDOT:PSS films along the patterned line path increased with increasing the laser fluence but the shoulder width increased with decreasing fluence, respectively. The clean, smooth, and straight ablated edges were accomplished after the electrode patterning with the laser fluence of 1.7 J/cm2 and 90 % overlapping rate.  相似文献   

17.
Indium-tin oxide (ITO) films deposited on heated and non-heated glass substrates by a pulsed Nd:YAG laser at 355 nm and ∼2.5 J/cm2 were used in the fabrication of simple organic light-emitting diodes (OLEDs), ITO/(PVK + Alq3 + TPD)/Al. The ITO was deposited on heated glass substrates which possessed resistivity as low as ∼3 × 10−4 Ω cm, optical transmission as high as ∼92% and carrier concentration of about ∼5 × 1020 cm−3, were comparable to the commercial ITO. Substrate heating transformed the ITO microstructure from amorphous to polycrystalline, as revealed by the XRD spectrum. While the polycrystalline ITO produced higher OLED brightness, it was still lower than that on the commercial ITO due to surface roughness. A DLC layer of ∼1.5 nm deposited on this ITO at laser fluence of >12.5 J/cm2 improved its device brightness by suppressing the surface roughness effect.  相似文献   

18.
The patterning of lanthanum-doped lead zirconate titanate (PLZT) and strontium-doped lead zirconate titanate (PSZT) thin films has been examined using a 5-ns pulsed excimer laser. Both types of film were deposited by rf magnetron sputtering with in situ heating and a controlled cooling rate in order to obtain the perovskite-structured films. The depth of laser ablation in both PSZT and PLZT films showed a logarithmic dependence on fluence. The ablation rate of PLZT films was slightly higher than that of PSZT films over the range of fluence (10–150 J/cm2) and increased linearly with number of pulses. The threshold fluence required to initiate ablation was ∼ 1.25 J/cm2 for PLZT and ∼ 1.87 J/cm2 for PSZT films. Individual squares were patterned with areas ranging from 10×10 μm2 up to 30×30 μm2 using single and multiple pulses. The morphology of the etched surfaces comprised globules which had diameters of 200–250 nm in PLZT and 1400 nm in PSZT films. The diameter of the globules has been shown to increase with fluence until reaching an approximately constant size at ≤ 20 J/cm2 in both types of film. The composition of the films following ablation has been compared using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. PACS 79.20.Ds; 82.80.Pv; 82.80.Ej  相似文献   

19.
This paper reports the use of graphite thin films as a counter electrode of a solid state photoelectrochemical cells of ITO/TiO2/PVC-LiClO4/graphite. The photoelectrochemical cells material was a screen-printed layer of titanium dioxide onto an ITO-covered glass substrate which was used as a working electrode of the device. The solid electrolyte used was PVC-LiClO4 that was prepared by solution casting technique. The graphite films which serve as a counter electrode were prepared onto glass substrate by electron beam evaporation technique at substrate temperatures variation of 25, 50, 100, 150 and 200 °C. The dependence of sheet resistance and surface morphology of the graphite films on substrate temperature were studied. The films deposited at 25 °C shows the smoothest surface morphology and the smallest grain size. Bigger grain size, rougher surface morphology of graphite film counter electrode. The current-voltage characteristics of four devices utilising the graphite counter electrode with different substrate temperature in dark as well as under illumination of 100 mWcm−2 light from a tungsten halogen lamp were recorded at room temperature and at 50 °C, respectively. It was found that the photovoltaic parameters of the device such as short-circuit current density, Jsc and open-circuit voltage, Voc increases with the decreasing average grain size of the graphite counter electrode. The device whose graphite film counter electrode was deposited onto the glass substrate at 25 °C gave the highest Jsc of 0.32 μA/cm2 and Voc of 117 mV, respectively.  相似文献   

20.
ZnO-coated TiO2 (ZTO) thin films were deposited on ITO substrates by a sol–gel method for application as the work electrode for dye-sensitized solar cells (DSSCs). The IV curve and the incident photon-to-current conversion efficiency (IPCE) value of DSSCs for ZTO thin films were studied and compared with single TiO2 films. The results show that the short-circuit photocurrent (J sc) and open-circuit voltage (V oc) values increased from 3.7 mA/cm2 and 0.68 V for the DSSCs with a single TiO2 film to 4.5 mA/cm2 and 0.72 V, respectively, for the DSSCs with a ZTO thin film. It indicated that the DSSCs with a ZTO thin film contributed to provide an inherent energy barrier that suppressed charge recombination significantly. In addition, the higher IPCE value in the ZTO thin film is attributed to the better charge separation by a fast electron transfer process using two semiconductors with different conduction band edges and energy positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号