首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cathode spot types and spot motion of arcs in ultra high vacuum have been investigated with large area cathodes that consisted of two adjacent pieces of Mo and Cu. Arc currents were 20–60 A dc and 8–20 kA pulse (duration about 1 ms). Two spot types occured with different velocities and surface erosion: Type 1 spots are typical for surfaces covered by oxides or thick adsorption layers, whereas clean surfaces show only type 2 spots. During arc-conditioning both types exist simultaneously in a complex mutual dependence. Type 1 spots react weakly on the cathode material, while type 2 spots burn preferentially on Cu and at the boundary line between Mo and Cu. The motion of type 1 spots is determined by the expanding spot plasma, whereas type 2 spots show a step-by step motion, determined by explosions in the arc craters. Generally a spontaneous formation of type 2 spots beneath the arc plasma takes place only with contaminated surfaces (probably by a transition from type 1 to type 2 spots). Thus a breakdown between plasma and cathode surface requires the presence of contaminations. The observed effects occur in low current dc-arcs as well as in high current pulse arcs. They are discussed for different spot models.  相似文献   

2.
The development of erosion craters on clean, smooth cathodes in UHV has been investigated with a time resolution of nanoseconds (current range 10–200 A). Furthermore, crater size erosion rate and velocity of spot displacement have been measured in dependence on current and surface conditions. The relevance of the results for different cathode spot models is discussed in detail. From the measurements the following conclusions are drawn. The craters are caused by the action of the discharge pressure on the molten metal within a spot. The spots move in a random manner in elementary steps of a crater radius with time constants of the order of 10?8 s. The main reason for the movement is the formation of micropoints at crater boundaries. Droplets and contaminations induce jumps of more than a crater radius. The impact of droplets causes considerable deformations of the cathode surface. Nanosecond pulse breakdowns and quasi-stationary arcs result in values of crater size, spot velocity and erosion rate that are comparable within an order of magnitude. These results support a non-stationary spot model that describes the cathode spot as a sequence of surface explosions.  相似文献   

3.
After an introductory definition of the vacuum arc cathode spot, its main theoretical aspects are highlighted. Most of the review is being devoted to the E-diagram method as well as to advanced nonstationary cathode spot models. A survey of the aim of the present computer simulation and its development following the author's very first concept of "dynamic field emission" is also given. The cathode spot model subjected to the computer simulation is described in detail, considering the laws of conservation of charge, mass, and energy in the complete cathode spot system. A short survey of the computational procedure is also given here. The main computational results may be summarized as follows: Within the actual model assumptions, a steady-state self-sustaining cathode spot does not exist. On the one hand, plasma-wall interactions with steady-state thermal equilibrium exist below the balance conditions of mass and energy, while on the other hand, real cathode spots that meet the requirements of both mass and energy balance never show thermal equilibrium but are characterized by thermal runaway. Therefore, instability is an inherent feature of cathode spots. Finally, a comparison between computational values and representative experimental results of cathode spot characteristics shows a rather good agreement, further supporting the principal validity of a model devoted particularly to a theoretical specification of the vacuum arc cathode spot.  相似文献   

4.
Influence of cathode materials (Ti, Al, Cu, TiN), ambient gases (Ar, N2, p = 0.1-1 Pa) and the arc current itself on the motion and the velocity of cathode spots in an arc coating process have been investigated with the help of a new high speed framing camera. It was found, that the cathode material causes different spot currents but in general the spot arrangement and the motion on the surface are similar. Surface contaminations due to ambient gases affect this dynamics in several ways. Insulating layers like AIN can drastically increase the instantaneous spot velocity, for example from <5 m/s on Al up to 170 m/s on AIN contaminated areas. TiN layers with a high conductivity increase the spot mobility at first. But at nearly completely contaminated surfaces (simulated by a TiN cathode), the mobility is strongly decreased. The values change from an average velocity of 6.3 m/s with a diffusion constant of 54 cm2/s (Ti, 0.01 Pa) to 2 m/s and 6.4 cm2/s at TiN. The course of the instantaneous spot velocity during the spot splitting phase was investigated too. The instantaneous spot velocity of each of the two new spots originated from the starting spot is relatively high (30–40 m/s) within the first 50 μs. The cathode material and the ambient gases are of slight influence in this phase. The movement is directed. In the further development the instantaneous spot velocity is decreasing to values under 5–10 m/s. The motion is now more and more random. Additionally it could be proved, that the lower stability limit for a stable discharge is strongly connected with the spot current, which depends on discharge conditions.  相似文献   

5.
The question is examined whether or not the existence of a cathode mechanism with high power density may be predicted from general physical laws, as well as the order of magnitude of the main cathode parameters of such a discharge. The answer is yes, though – because of many feedbacks and simplifications – the numerical values calculated in this way are not more than crude estimations. Essentially two conditions have to be fulfilled: The first is the dominance of collective electron emission processes, the second is the dominance of Joule heating combined with the limit of stationarity. Both conditions result in similar values of the cathode parameters. In this low-current region (about 10…100 A) the existence of a high-current density cathode mechanism (order of magnitude: 108 A/cm2) is proved, with consequences for all the other parameters, in rough agreement with the results of measurements in arc cathode spots. Thus the typical arc spot regime may be founded theoretically by these argumentations.  相似文献   

6.
With the improvement of the current level of power grids, the requirements of the opening level of the vacuum switches are also increasing. Vacuum arc cathode spots provide steam and electrons and, to a certain extent, determine the opening capacity of the vacuum switch. In this paper, a vacuum arc cathode spot research platform based on the de-mountable vacuum chamber is constructed. The characteristics of the vacuum arc cathode spots under the transverse magnetic field (TMF) contacts are assessed by a high-speed charge coupled device. The experimental results show that the cathode spot diffusion process can be divided into three processes through cathode spot distribution, arc voltage and current: initial diffusion stage of cathode spots, unstable motion stage of cathode spots, and extinguishing stage. The motion mode of cathode spots during unstable motion stage can be divided into cathode spots group stagnation (CSGS) to multi-cathode jet (MCJ) switch mode, cathode spots group motion (CSGM) to MCJ switch mode, CSGM mode, and MCJ mode. The effects of peak current and contact diameter on unstable motion mode were analysed.  相似文献   

7.
Experiments are reported which allow the determination of retrograde velocity of individual cathode spots and of the plasma flow in a pulsed discharge using various metals and carbon as cathode materials. For discharge currents from 10 to 40 amps, pressures of 3 mmHg and magnetic field strengths of 6.103G retrograde spot velocities from 30 to approximately 300 m/sec are observed and the corresponding plasma flow velocities are in the range from 4,400 to 8,600 m/sec. On cathode materials with low melting points, the splitting rate of spots and the motion of individual spots is small, whereas under identical conditions the spots on refractory materials are highly mobile, the splitting rate is large, and the lifetime of individual spots is short.  相似文献   

8.
An investigation has been carried out of cathode spot dynamics in a triggered vacuum arc in a demountable chamber. A rectangular current pulse of 1-5 kA, 1-5 ms has been used. Sufficient statistics were collected. The expansion of a cathode spot ring on a clean, pure metal surface was corroborated to be a retrograde movement in the self-magnetic field which obeys the same law as the movement of a single spot in an external magnetic field. The influence of a contact gap of 0.5-8 mm and current on the dynamics of cathode spots was investigated. The gap dependence of the proportional coefficient between the spot velocity and magnetic field in the case of a pure copper cathode was obtained. A phenomenon was discovered, where a group of cathode spots form in the short arcs on the CuCr cathodes after a transition diffuse arc stage. The follow-up investigation revealed that a close interrelation exists between the cathode and anode processes in short arcs. This interrelation is responsible for the appearance of the discovered phenomenon. Short-circuit performance tests conducted for a commercial vacuum interrupter proved cathode spot group formation to be responsible for the interruption failure at short contact gaps  相似文献   

9.
This paper contains a review of modern physical models of vacuum arc cathode spots in the discussion of which the main attention has been devoted to the question of the cathode spot current density j. Experimental features of current density measurements and possible errors with the use of different techniques are discussed in detail. The physical limitations due to transfer of high current densities through the near-cathode plasma have been considered and the criteria which limit the highest and lowest possible values of current density are suggested. In addition, the possibility of obtaining high current density emission in the " metal-dielectric-vacuum" system was examined.  相似文献   

10.
真空短间隙微弧级联效应观测   总被引:1,自引:0,他引:1       下载免费PDF全文
曹柱荣  丁永坤  刘慎业 《物理学报》2010,59(4):2640-2644
利用0.5 mm间隙微通道板成像器观测了微弧放电的斑点级联效应.实验发现,微弧阴极斑点的运动轨迹呈多类型的折线轨迹,斑点间隙在200—300 μm,首发射阴极斑点的放电强度比次级斑点高一个量级以上,而且次级斑点之间的放电强度相对稳定,次级斑点在放电阴极表面无融蚀现象.实验表明,次级斑点产生机制与首发射存在较强的依赖关系. 关键词: 阴极斑点 微弧级联 微通道板成像器  相似文献   

11.
The kinds of electrical-arc cathode spots described in literature are analyzed. Division of spots into two types qualitatively different in nature?explosive spots and thermal spots?is proposed. The observed microsecond oscillations of the brightness of a rapidly moving spot are interpreted in terms of heat accumulation in the cathode and random motion of the spot. The transition of the spot to a thermal region is analyzed and the lifetime of nonstationary thermal spots is shown to be proportional to their size squared.  相似文献   

12.
A model of near-electrode processes is applied here to describe the behavior of cathode spots on graphite cathode in vacuum arc. The physical model is based on a kinetic treatment of cathode evaporation, electron emission from the cathode, and plasma production. The model consists of physical assumptions and a system of equations that are formulated in the paper. Spot parameters, such as cathode erosion rate, cathode potential drop, cathode surface temperature, current density, electric field, and plasma density, temperature, and velocity in the near-electrode region are calculated numerically. The calculation includes the dependence of spot parameters on spot current and spot lifetime. The variation of spot parameters as a function of spot lifetime are very strong at lifetimes shorter than 10 μs. The calculations indicate that Joule heating in the cathode body is significant, and may exceed cathode heating by the ion heat flux. Calculated spot parameters are compared with the corresponding experimental data for relatively low arc currents (<100 A) and their agreement is discussed  相似文献   

13.
《Physics letters. A》2006,353(1):98-100
The motion of vacuum arc spots on nanocrystalline and coarse-grained CuCr25 alloys were observed by a digital high speed video camera and SEM. Experimental results show that without an external magnetic field a spot can move a long distance in a direction and leave a long straight arc trace (50–100 μm) on the surface of nanocrystalline CuCr25 cathode. This kind of spot motion can be defined as sub-directional motion. The spot motion is totally random and restricted on coarse Cr particles for coarse-grained CuCr25 cathode. Arc spots move sub-directionally and more easily on nanocrystalline cathode maybe results from an active surface formed by the special electronic structure due to Cu–Cr internal electric field.  相似文献   

14.
The main parameters and dimensions of cathode spots have been under discussion for years. To solve these current questions, a new system was specially designed. The image converting high speed framing camera (HSFC) combines a micrometer lateral resolution with a nanosecond time resolution and a very high optical sensitivity. This camera was used to study the microscopic behavior of vacuum arc cathode spots in a pulsed high current arc discharge on copper. The direct observation of these spots with high resolution revealed that one single cathode spot, as normally observed by optical means, consists of a number of simultaneously existing microscopic subspots, each with a diameter of about 10 μm and a mean distance of 30-50 μm between them. The mean existence time of these subspots on copper was found to be about 3 μs, where the position of a subspot remains unchanged (with an upper limit of about 5 μm) during its existence time. The lower limit of the current density in the cathode spots was estimated to be on the order of 1010-1011 A/m2. An upper limit of the crater surface temperature was estimated by a comparison between the brightnesses of a cathode spot and of a black body radiation lamp to about 3000 K  相似文献   

15.
董攀  刘尔祥  李杰  江孝国  王韬  石金水  龙继东 《强激光与粒子束》2021,33(3):034006-1-034006-5
氘化物真空弧放电在许多领域均有应用,如无损检测、石油探井、中子活化分析等。和金属阴极不同,氘化物阴极放电时会释放大量的气体分子,表现出许多不同性质。采用放大镜头和ICCD相机观察了氘化物阴极真空弧放电光斑分布。测量系统的空间分辨率约为5 μm,时间分辨率最小2 ns。放电脉冲半高全宽(FWHM)0.9 μs,弧流波形为半周期正弦波。实验结果表明,氘化物真空弧放电时,所有阴极斑聚集为一个群落,表现为一个大光斑;在液滴作用下,阴极斑群落偶尔也会分裂为两个或多个群落;光斑形状不受弧流影响,但面积和亮度会随弧流增加而增大。氘化物阴极放电斑点聚集有利于产生高密度等离子体,提高放电效率。  相似文献   

16.
17.
Consistent analyses are provided for the motion of cathode spot cells in the presence of magnetic fields parallel to the cathode surface (retrograde motion), for the spontaneous splitting of cells, and for the grouping of cathode spot cells in organized structures. The formulas for retrograde motion and cell splitting frequencies are evaluated for cells carrying 1-80 A on copper vacuum arc cathodes. The results for retrograde motion are shown to agree satisfactorily with published experimental data. It is concluded that retrograde motion can be explained simply, and that measurements of retrograde velocities can provide useful information concerning cell sizes in cathode spots. The close connection demonstrated between retrograde motion and cell splitting yields the conclusion that cell splitting should slow in the presence of an ambient gas, as does retrograde motion. Cathode spot sizes and energies of formation are evaluated for spots that are circular clusters containing up to twelve individual cells. It is concluded, in apparent agreement with experiment, that such clusters should not be stable under conditions of clean vacuum where the cells exhibit retrograde motion.  相似文献   

18.
19.
This paper summarizes recent experimental data related to anode phenomena in both vacuum and atmospheric pressure arcs. Currents in the range 10A to 3OkA are discussed, and particular emphasis is placed on the effect of plasma flow from the cathode. For vacuum arcs this plasma flow is the directed motion of metal ions from the cathode spots. These ions reduce the anode voltage drop, and maintain a diffuse anode termination. At atmospheric pressure the ion flow is impeded by gas-atom collisions. However, a plasma flow towards the anode can result from magnetic pinch forces at the constricted cathode termination. In the absence of plasma flow, the anode termination constricts to a vigorously evaporating anode spot. For a typical non-refractory electrode such as copper, the spot operates at a temperature close to the boiling point irrespective of the gas pressure. The spot temperature is dictated by the balance between electrical input power and evaporative losses. These anode phenomena are discussed in relation to vacuum switchgear, arc welding and arc furnaces.  相似文献   

20.
A general kinetic equation is derived for elementary cathode spots (ECSs) constituting a group cathode spot (GCS). The equation makes it possible to evaluate the kinetic constants of the spots if certain experimental data are available. ECS kinetics features are established. An explanation for the possibility of the stable state of a GCS is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号