首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanosomes of the retinal pigment epithelium (RPE) are long lived organelles that may undergo photobleaching with aging, which can diminish the antioxidant efficiency of melanin. Here, isolated porcine RPE melanosomes were experimentally photobleached with visible light to simulate aging and compared with untreated granules or control particles (black latex beads) for their effects on the survival of photically stressed ARPE-19 cultures. Particles were delivered to cultures for uptake by phagocytosis then cells were exposed to violet light and analyzed by a new live cell imaging method to identify the time of apoptotic blebbing as a dynamic measure of reduced cell survival. Results indicated that untreated melanosomes did not decrease photic injury to ARPE-19 cells when compared with cells lacking particles or with cells containing control particles, as might be expected if melanin performed an antioxidant function. Instead cells with untreated melanosomes showed reduced survival indicated by an earlier onset of blebbing and a lower fraction of surviving cells after photic stress. Cell survival was reduced even further in stressed cells containing melanosomes that were photobleached, and survival decreased with increasing photobleaching time. Photobleaching of RPE melanosomes therefore makes cells containing them more sensitive to light-induced cytotoxicity. This observation raises the possibility that aged melanosomes increase RPE cell photic stress in situ, perhaps contributing to reduced tissue function and to degeneration of the adjacent retina that the RPE supports. How melanosomes (photobleached or not) interact with their local subcellular environment to modify RPE cell survival is poorly understood and is likely determined by the physicochemical state of the granule and its constituent melanin. The live cell imaging method introduced here, which permitted detection of a graded effect of photobleaching, provides a sensitive bioassay for probing the effects of melanosome modifications.  相似文献   

2.
Melanosomes of the retinal pigment epithelium (RPE) are relatively long-lived organelles that are theoretically susceptible to changes induced by exposure to visible light. Here melanosomes were isolated from porcine RPE cells and subjected to high intensity visible light to determine the effects of illumination on melanosome structure and on the content and antioxidant properties of melanin. As compared to untreated melanosomes, illuminated granules showed morphologic changes consistent with photodegradation, which included variable reductions in electron density demonstrated by transmission electron microscopy (TEM), and particle fragmentation and surface disruption revealed by scanning electron microscopy (SEM) and atomic force microscopy. Illuminated melanosomes had lower melanin content, indicated by measures of absorbance and electron spin resonance (ESR) signal intensity, and reduced ability to bind iron, shown by chemical and ESR analyses. Compared to untreated melanosomes, ESR-spin trapping analyses further indicated that illuminated melanosomes show increased photogeneration of superoxide anion and reduced ability to inhibit the iron ion-catalyzed free radical decomposition of hydrogen peroxide. It appears therefore that visible light irradiation can disrupt the structure of RPE melanosomes and reduce the amount and antioxidant properties of melanin. Some of these changes occur in human RPE melanosomes with aging and the results obtained here suggest that visible light irradiation is at least partly responsible. The consequence of light-induced changes in RPE melanosomes may be a diminished capacity of melanin to help protect aged cells from oxidative damage, perhaps increasing the risk of diseases with an oxidative stress component such as age-related macular degeneration.  相似文献   

3.
The purpose of this study was to determine whether an age-related increase in photoreactivity of human retinal melanosomes (MS) can cause phototoxicity to retinal pigment epithelium (RPE) cells. MS were isolated post mortem from young (20-30 years, young human melanosomes [YHMs]) and old (60-90 years, old human melanosomes [OHMs]) human eyes and from young bovine eyes (bovine melanosomes [BMs]). Confluent cultured ARPE-19 cells were fed equivalent numbers of OHMs or BMs and accumulated similar amounts of melanin as determined by electron paramagnetic resonance assay. Cells with and without MS were either maintained in the dark or exposed to blue light for up to 96 h and assessed for alterations in cell morphology, cell viability and lysosomal integrity. Incubation of cells in dark in the presence of internalized MS or irradiation of cells with blue light in the absence or presence of BMs did not significantly affect cell viability. However, exposures to blue light in the presence of OHMs resulted in abnormal cell morphology, up to approximately 75% decrease in mitochondrial activity, loss of lysosomal pH and cell death. OHMs contained significantly less melanin than YHMs, supporting the hypothesis that melanin undergoes degradation during RPE aging. Our results demonstrate that aged MS can be phototoxic to human RPE cells and support a contributing role of MS in RPE aging and in the pathogenesis of age-related macular degeneration.  相似文献   

4.
Abstract-The red pigment granule of Belpharisma japonicum is believed to be a photoreceptor organelle mediating photodispersal. Freeze-fracture and thin section electron microscopy revealed that the pigment granules contained a honeycomb-like structure constructed of folded membranes. In the fracture face of the honeycomb-like structure, small membrane particles were observed, which might correspond to pigment—protein complexes. The pigment granules were isolated and detergent-solubilized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the pigment granules mainly contained a 200 kDa membrane protein. The complex of red pigment and 200 kDa protein was isolated by gel-filtration chromatography of the detergent-solubilized components, and the protein was subjected to SDS-PAGE and amino acid analysis. The 200 kDa protein could not be dissociated into subunits by 2-mercaptoethanol, indicating that the protein is composed of a single polypeptide chain. Hydrophobic amino acids contained in the 200 kDa protein were not dominant, suggesting that only partial domains may extend across the membrane of the honeycomb-like structure.  相似文献   

5.
One of the known important functions of hair is protection from extensive sunlight. This protection is accomplished in large part due to natural hair pigmentation which is known to reflect the number of melanin granules (melanosomes) in the hair shaft, and melanin variants. Melanin takes in excessive light energy and converts it to heat in a process called absorption; heat is then dissipated into the environment as infrared radiation, thereby protecting the underlying skin. We used transmission electron microscopy (TEM) to visualize the melanosome counts in samples of human hair, and used thermal microscopy to measure the temperature changes of the samples when exposed to green and blue light lasers. In our experiments green light conversion to heat was highly correlated to the number of melanosomes, whereas blue light conversion to heat was less correlated, which may be because the reddish melanosomes it contains are less effective in absorbing energy from the blue spectrum of light. Anyway, we have shown the metals accumulation in the melanin can be easily visualized with TEM. We confirmed that the amount of melanin granules in human hair defines the conversion to heat of light energy in the visible spectrum.  相似文献   

6.
The effect of continuous UV radiation and hydrogen peroxide on destruction and antioxidant properties of synthetic DOPA-melanin (prepared by oxidation of 3,4-dihydroxyphenylalanine (DOPA)) and melanosomes isolated from cells of the retinal pigment epithelium (RPE) was investigated. The kinetics of melanin destruction was recorded based on the accumulation of fluorescent low-molecular-weight reaction products, the antiradical activity of melanin was determined by chemiluminescence method, the concentration of free radical products was measured by electron paramagnetic resonance, and the antioxidant activity of melanins was estimated by their inhibitory effect on lipid peroxidation. It was shown that UVC—UVA irradiation (up to 5 hours) of DOPA-melanin and melanosomes of retinal pigment epithelium decreased neither the latency period of luminol chemiluminescence nor the inhibitory action of pigments on Fe2+- and UV-induced peroxidation of cardiolipin liposomes. However, very long UV irradiation gave rise to fluorescent destruction products, decreased the concentration of paramagnetic centers in the pigment (especially light-dependent ones), and decreased the antiradical and antioxidant activities. For example, UV irradiation of DOPA-melanin during 52 h resulted in approximately a 2-fold decrease in the concentration of paramagnetic centers and decline of antiradical and antioxidant activities. However, even with such a hard irradiation the pigment retained significant inhibitory activity against lipid peroxidation. The oxidative destruction of DOPA-melanin in the presence of hydrogen peroxide in the dark resulted in complete destruction of the polymer and loss of its protective properties. It is assumed that destruction of RPE cell melanin is caused mainly by oxidative processes.  相似文献   

7.
Photosystem I particles (PSI-200) isolated from spinach leaves were studied by means of absorbance, 77K fluorescence and resonance Raman (RR) spectroscopy. The aim was to obtain better insight into the changes of the pigment spectral properties in those particles during prolonged exposure to high-light intensities and to reveal the involvement of these pigments in the photoprotection of the PSI. During prolonged exposure to high-light intensities of spinach PSI particles, a loss of a significant amount of photosynthetic pigments was observed. It was shown that various pigments exhibited different susceptibility to photodamage. In addition to bleaching of chlorophyll a (Chl a), bleaching of carotenoids was also clearly observed. RR technique allowed us to recognize the type and conformation of photobleached carotenoid molecules. Raman data revealed a nearly full photobleaching of the long-wavelength lutein molecules. The observed similar bleaching rate of the lutein molecules and the most-red shifted long-wavelength Chl a, located in the antenna membrane protein Lhca4, suggested that these molecules are located closely. Our results showed that the photobleached antenna pigments and especially luteins and the most long-wavelength absorbing chlorophylls are involved in photoprotection of PSI core complex.  相似文献   

8.
Melanosomes and lipofuscin were isolated from 14-, 59-, and 76-year-old, human retinal pigment epithelium specimens and examined. The morphological features of these samples were studied by scanning electron microscopy and atomic force microscopy, and the photoionization properties were examined by photoelectron emission microscopy. Ovoid- and rod-shaped melanosomes were observed. The size of the granules and the distribution between the two shapes show no significant age-dependent change. However, there is a higher occurrence of irregularly shaped aggregates of small round granules in older samples which suggests degradation or damage to melanosomes occurs with age. The melanosomes from the 14-year-old donor eye are well characterized by a single photoionization threshold, 4.1 eV, while the two older melanosomes exhibit two thresholds around 4.4 and 3.6 eV. Lipofuscin from both young and old cells show two thresholds, 4.4 and 3.4 eV. The similarity of the potentials observed for aged melanosomes and lipofuscin suggest that the lower threshold in the melanosome sample reflects lipofuscin deposited the surface of the melanosome. The amount, however, is not sufficient to alter the density of the melanosome, and therefore these granules do not separate in a sucrose gradient at densities characteristic of the typical melanolipofuscin granule. These data suggest that thin deposits of lipofuscin on the surface of retinal pigment epithelium melanosomes are common in the aged eye and that this renders the melanosomes more pro-oxidant.  相似文献   

9.
Antioxidant properties of melanin in retinal pigment epithelial cells   总被引:7,自引:0,他引:7  
The retinal pigment epithelium (RPE) is a monolayer of highly pigmented cells lining the inner aspect of Bruch's membrane. This pigmentation is due to eumelanin and a possible antioxidant role of melanin is reported here. The photo-oxidation of A2E, a constituent of RPE lipofuscin, leads to the sequential addition of up to nine oxygen atoms and/or the addition or loss of two hydrogen atoms. These photo-oxidations were investigated in the presence and absence of either calf or human RPE melanin in A2E-laden RPE cells. It was found that calf melanin was protective against the photo-oxidation of A2E, with an inhibition of oxidation of up to 50% in the case of the addition of two oxygen atoms. Calf melanin was also protective against blue light-induced damage to RPE cells. In addition this ability appears to decrease in humans as they grow older. With aging, a melanin-lipofuscin complex called melanolipofuscin forms. It is suggested that the oxidation or photo-oxidation of A2E in vivo may contribute to the age-related deterioration of the anti-oxidant role of RPE melanin and lead to various retinal disorders, such as age-related macular degeneration.  相似文献   

10.
Photoisomerization and Relaxation of Symmetrical Triazacarbocyanine Dyes in an Alcoholic Mixture at Low Temperature The partial photobleaching of a series of symmetrical triazacarbocyanine dyes with different heterocycles in EtOH/MeOH/i-PrOH at low temperature (110 to 250 K) was investigated by UV/VIS spectra. Kinetic data of the dark reaction of photobleached compounds are given. The effect of electron-donating or -accepting substituents, respectively, and of protonation of the photobleached compound on kinetic data and on UV/VIS spectra was studied. Products of photobleaching and mechanisms of the dark reaction are discussed.  相似文献   

11.
Kinetic studies of irreversible photobleaching of bacteriorhodopsin (bR) in purple membrane (PM) at neutral pH have previously indicated the existence of two kinds of species which differ in their structural stability. bR was shown to have kinetically slow- and fast-decayed components with the faster one increasing with changes in intra- and intermolecular structures in darkness. However, our recent work reported that photobleaching kinetics above pH 10 were characterized by a single-decay component. In order to elucidate the factors responsible for the heterogeneous or homogeneous stability of photobleaching, we conducted investigations into the structural changes in bR in PM induced by photobleaching at pH 7 and 11 by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR spectra of bR photobleached at pH 7 and 11 showed that an increase in IR peak intensity at 1656 cm−1 occurred simultaneously with decreases at 1666 cm−1, indicating an αII-to-αI transition in transmembrane helices during photobleaching. The most significant change in IR spectra occurred at 1626 cm−1 for samples photobleached at pH 7, and was attributed to structures formed between adjacent molecules. The origin of the heterogeneity of photobleaching is discussed on the basis of structural characteristics found in the bleached membranes.  相似文献   

12.
To study the photobleaching of the main fluorescent compounds of the arterial wall, we repeatedly measured the time-resolved fluorescence of elastin, collagen and cholesterol during 560 s of excitation with nitrogen laser pulses. Three fluence rate levels were used: 0.72, 7.25 and 21.75 microW/mm2. The irradiation-related changes of the fluorescence intensity and of the time-resolved fluorescence decay constants were characterized for the emission at 390, 430 and 470 nm. The fluorescence intensity at 390 nm decreased by 25-35% when the fluence delivered was 4 mJ/mm2, a common value in fluorescence studies of the arterial wall. Cholesterol fluorescence photobleached the most, and elastin fluorescence photobleached the least. Photobleaching was most intense at 390 nm and least intense at 470 nm such that the emission spectra of the three compounds were markedly distorted by photobleaching. The time-resolved decay constants and the fluorescence lifetime were not altered by irradiation when the fluence was below 4 mJ/mm2. The spectral distortions associated with photobleaching complicate the interpretation of arterial wall fluorescence in terms of tissue content in elastin, collagen and cholesterol. Use of the time-dependent features of the emission that are not altered by photobleaching should increase the accuracy of arterial wall analysis by fluorescence spectroscopy.  相似文献   

13.
Melanosomes were isolated from the retinal pigment epithelium (RPE), iris and choroid of mature (age >2 years) and newborn (age <1 week) bovine eyes. Scanning electron microscopy was utilized to analyze the morphology of the melanosomes, which were found to vary among different tissues and different ages. While the total content of amino acids differs slightly (ranging from 9% to 15% by mass), the distributions of the amino acids are similar. The pheomelanin content is low in the choroid and the RPE (0.1-0.5%), and moderate in the iris (<2%); therefore, the major melanin component of bovine eye melanosomes is eumelanin, independent of the shape of the melanosomes. The yields of pyrrole-2,3,5-tricarboxylic acid from melanosomes decrease in the following order: choroid > iris > RPE, and exhibit decreasing yields with age. 13C solid-state nuclear magnetic resonance (NMR) spectroscopic analysis of iris and choroid melanosomes indicates the same trends. These observations suggest that the 5,6-dihydroxyindole-2-carboxylic acid contents decrease in the following order: choroid > iris > RPE, and decrease with age. Moreover, the 13C solid-state NMR spectra show (1) for the same age samples, the CH:Cq ratio for choroid is larger than that for iris melanosomes; and (2) an increase in the concentration of carbonyl groups with age within each type of melanosome.  相似文献   

14.
羰基化蛋白质组学分析进展   总被引:2,自引:0,他引:2  
蛋白质羰基化作为一种不可逆的翻译后修饰,与诸多疾病和衰老密切相关。有关蛋白质羰基化的各项研究受制于其低丰度、低电离效率及化学相对不稳定性而发展较慢。基于质谱的蛋白质组学分析技术的进步,使蛋白质羰基化的规模化研究成为可能,进而为蛋白质羰基化的相关调控通路研究提供了数据支撑。该综述介绍了蛋白质羰基化的概念、途径、检测方式,并重点介绍了蛋白组学技术应用于蛋白质羰基化分析的进展。  相似文献   

15.
Abstract-Fluorescence photobleaching of a carboxyfiuorescein-labeled protein (erythrocyte cytoskel-etal protein 4.1) immobilized on bare glass is found to be spontaneously reversible, provided that the sample is deoxygenated. After a short (hundredths of seconds) photobleaching laser flash, the subsequent fluorescence excited by a dim probe beam partly recovers on a long (tenths of second) time scale, even in the absence of chemical exchange or diffusion processes. Neither the fraction of the fluorescence that bleaches reversibly nor its recovery rate is a strong function of fluorophore surface concentration. At a fixed surface concentration, the reversibly photobleached fraction and its recovery rate decreases with increasing duration or intensity of the bleaching flash. On the other hand, nondeoxygenated air-equilibrated samples exhibit almost total irreversible bleaching on this time scale. Quantitative fluorescence microscopy experiments occasionally require deoxygenation to avoid photochemical crosslinking or photobleaching or to enhance the triplet state population. The observations presented here indicate that fluorescence recovery after photobleaching (FRAP) experiments performed under deoxygenated conditions for measuring diffusion or chemical kinetics should be interpreted with caution: fluorescence recoveries may be due to intrinsic photochemical processes rather than fluorophore mobility. The recovery effect appears too slow to be ascribed simply to a relaxation of a triplet state; other possible explanations are offered.  相似文献   

16.
A technique for measuring the photoionization spectrum and the photoelectron emission threshold of a microscopic structured material is presented. The theoretical underpinning of the experiment and the accuracy of the measurements are discussed. The technique is applied to titanium silicide nanostructures and melanosomes isolated from human hair, human and bovine retinal pigment epithelium cells, and the ink sac of Sepia officinalis. A common photothreshold of 4.5 +/- 0.2 eV is found for this set of melanosomes and is attributed to the photoionization of the eumelanin pigment. The relationship between the photoionization threshold and the electrochemical potential referenced to the normal hydrogen electrode is used to quantify the surface oxidation potential of the melanosome. The developed technique is used to examine the effect of iron chelation on the surface oxidation potential of Sepia melanosomes. The surface oxidation potential is insensitive to bound Fe(III) up to saturation, suggesting that the metal is bound to the interior of the granule. This result is discussed in relation to the age-dependent accumulation of iron in human melanosomes in both the eye and brain.  相似文献   

17.
Photoexcited melanin from retinal pigment epithelium (RPE) has been shown to induce photo-oxidation of ascorbate with concomitant generation of hydrogen peroxide. The aim of this study was to test whether the age-related changes in melanin content and distribution in the RPE affect the susceptibility of RPE cells to ascorbate-mediated photo-oxidation. Our results demonstrate that there is an age-dependent shift in the pathways with which ascorbate interacts in human RPE. In young RPE, melanin-ascorbate interactions may lead to pro-oxidant effects, but in the aged there is no net increase in photo-oxidation in the presence of ascorbate in comparison with samples without ascorbate. However, as ascorbate undergoes light-induced depletion and photogenerates ascorbyl free radical in the old RPE cells with initial yields similar to that observed for young RPE, an influence of ascorbate on oxidation pathways is revealed in the old RPE as well. Interestingly, the pro-oxidant effects of photoexcited melanolipofuscin-ascorbate interactions are greater than for photoexcited melanosomes when normalized to the same melanin content. The pro-oxidant effects of photoexcited melanin-ascorbate interactions are strongly dependent on the irradiation wavelength, this being the greatest for the shortest wavelength studied (340 nm) and steeply decreasing with increasing wavelength but still detectable even at 600 nm.  相似文献   

18.
The site-specific identification of α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) residues in proteins is reported. Semialdehydic protein modifications result from the metal-catalyzed oxidation of Lys or Arg and Pro residues, respectively. Most of the analytical methods for the analysis of protein carbonylation measure change to the global level of carbonylation and fail to provide details regarding protein identity, site, and chemical nature of the carbonylation. In this work, we used a targeted approach, which combines chemical labeling, enrichment, and tandem mass spectrometric analysis, for the site-specific identification of AAS and GGS sites in proteins. The approach is applied to in vitro oxidized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and an untreated biological sample, namely cardiac mitochondrial proteins. The analysis of GAPDH resulted in the site-specific identification of two AAA and four GGS residues. Computational evaluation of the identified AAS and GGS sites in GAPDH indicated that these sites are located in flexible regions, show high solvent accessibility values, and are in proximity with possible metal ion binding sites. The targeted proteomic analysis of semialdehydic modifications in cardiac mitochondria yielded nine AAS modification sites which were unambiguously assigned to distinct lysine residues in the following proteins: ATP/ATP translocase isoforms 1 and 2, ubiquinol cytochrome-c reductase core protein 2, and ATP synthase α-subunit.  相似文献   

19.
The inaccessibility of osteocytes due to their embedment in the calcified bone matrix in vivo has precluded direct demonstration that osteocytes use gap junctions as a means of intercellular communication. In this article, we report successfully isolating primary cultures of osteocytes from chick calvaria, and, using anti-connexin 43 immunocytochemistry, demonstrate gap junction distribution to be comparable to that found in vivo. Next, we demonstrate the functionality of the gap junctions by (1) dye coupling studies that showed the spread of microinjected Lucifer Yellow from osteoblast to osteocyte and between adjacent osteocytes and (2) analysis of fluorescence replacement after photobleaching (FRAP), in which photobleaching of cells loaded with a membrane-permeable dye resulted in rapid recovery of fluorescence into the photobleached osteocyte, within 5 min postbleaching. This FRAP effect did not occur when cells were treated with a gap junction blocker (18alpha-glycyrrhetinic acid), but replacement of fluorescence into the photobleached cell resumed when it was removed. These studies demonstrate that gap junctions are responsible for intercellular communication between adjacent osteocytes and between osteoblasts and osteocytes. This role is consistent with the ability of osteocytes to respond to and transmit signals over long distances while embedded in a calcified matrix.  相似文献   

20.
Abstract— Time resolved emission spectra have been measured of Anabaena variabilis cells which were grown under different light conditions. The spectra of algae photoinhibited with strong white light for 6 h as well as of algae irradiated with blue light are similar to those of the control (weak white light). Cells that were photobleached with strong white light or red light (5 days each) show dramatic changes in their time resolved emission spectra. The contributions of long-lived components to the time resolved emission spectra are large in photobleached cells. In both the reference sample and in photoinhibited cells the short-lived components with lifetimes in the picosecond range prevail which indicates efficient energy transfer within the antenna pigments. The results upon photobleaching are discussed in terms of a functional decoupling of the phycobilisome rods from the core while photoinhibition does not influence the pigment composition and the molecular organization of the antenna pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号