首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyrazolylboratomolybdenum complexes containing the η2-CSNMe2 ligand have been prepared by treating the appropriate carbonylmetallate anion with Me2NCSCl. The structure of pzB(pz)3Mo(CO)22-CSNMe2) (IIIb) has been established by X-ray crystallographic methods. The 1H and 13C NMR spectra of IIIb show evidence for two separate intramolecular dynamic processes in solution. Complex IIIb can be alkylated at the sulphur atom and forms 1/1 complexes with mercuric halides.  相似文献   

2.
Trisilylphosphanes of the type PSi3 Me x Ph 9–x are formed when sodium/potassiumphosphide reacts with methylphenylchlorosilanesMe n Ph 3–n SiCl or with mixtures of methylphenylchlorosilanes. The phosphanes (SiMe 3) n P (SiMe m Ph 3–m )3–n (n, m=0, 1, 2, 3) were separated and purified by destillation or crystallization and their29Si as well as31P-NMR-spectra were recorded.
  相似文献   

3.
Hexamethylphosphoramide (HMPA) adducts of the type Ph3PbX·HMPA (X=Cl, Br, I, and NCS), Ph2PbX2·2HMPA (X=Cl, Br, and I), and Ph2PbX2·HMPA (X=Br and I), have been prepared and characterized by infrared, Raman, mass, and 31P nmr spectroscopy. Molecular weight and infrared solution data show that Ph3PbX·HMPA adducts dissociate in benzene, the degree of dissociation being NCS«Cl<Br<I. The thiocyanate adducts Ph3PbNCS·HMPA and Ph2Pb(NCS)2·2HMPA have v(CN) and v(CS) frequencies in the solid state, and v(CN) frequencies and absorptivities in benzene solution consistent with N-bonded thiocyanate in the solid state and in benzene solution. Vibrational frequencies are reported in the range 260 to 80 cm−1 and assignments are made for v(Pb-X), v(Pb-O0, and v(Pb-NCS) modes. The 1:1 adducts Ph3PbX·HMPA are monomeric and trigonal bipyramidal, whereas the 1:2 adducts Ph2PbX2·2HMPA are monomeric and cis-octahedral and the Ph2PbX2·HMPA appear to be halogen bridged polymers with lead six-coordinate. Coordination of HMPA causes a small upfield change in 31P chemnical shift values, and 2J(Pb-P) values vary with X in the order: NCS>I-Br>Cl for Ph3PbX·HMPA adducts. Corresponding tin and lead adducts are compared with respect to mode of adduct formation.  相似文献   

4.
Attempts to build up polyanionic networks on the basis of thiocyanatometallates of CuI and AgI led to the synthesis of three new tris(thiocyanato)dimetallates(I) A[M2(SCN)3] with M = Cu, Ag and A = Me3NH and A = [Me2CNMe2]. The crystal structures show distorted tetrahedral [M(SCN)3(NCS)] and [M(SCN)2(NCS)2] building groups interlinked by SCN bridges. The resulting 3‐dimensional frame works accommodate the counter cations in spacious voids. Me3NHCu2(SCN)3 ( 1 ) was synthesized by reaction of CuSCN with (CH3)3NHCl in the presence of an excess of KSCN in acetone. 1 crystallizes in the monoclinic space group P21/c with a = 578.4(1), b = 3025.1(5), c = 754.7(3) pm; β = 112.53°; Z = 4. The reaction of CuSCN or AgSCN with (CH3)2NH2Cl and KSCN in acetone resulted in the formation of [Me2CNMe2]Cu2(SCN)3 ( 2 ) and [Me2CNMe2]Ag2(SCN)3 ( 3 ). Compound 2 crystallizes in the orthorhombic space group P212121 with a = 720.6(1), b = 1161.5(1), c = 1655.0(2) pm; Z = 4. The isotypical structure of 3 exhibits somewhat larger unit cell dimensions; a = 743.4(1), b = 1222.5(1), c = 1683.9(2) pm.  相似文献   

5.
The mononuclear complexes [(η6-arene)Ru(ata)Cl]PF6 {ata = 2-acetylthiazole azine; arene = C6H6 [(1)PF6]; p-iPrC6H4Me [(2)PF6]; C6Me6 [(3)PF6]}, [(η5-C5Me5)M(ata)]PF6 {M = Rh [(4)PF6]; Ir [(5)PF6]} and [(η5-Cp)Ru(PPh3)2Cl] {η5-Cp = η5-C5H5 [(6)PF6]; η5-C5Me5 (Cp*) [(7)PF6]; η5-C9H7 (indenyl); [(8)PF6]} have been synthesised from the reaction of 2-acetylthiazole azine (ata) and the corresponding dimers [(η6-arene)Ru(μ-Cl)Cl]2, [(η5-C5Me5)M(μ-Cl)Cl]2, and [(η5-Cp)Ru(PPh3)2Cl], respectively. In addition to these complexes a hydrolysed product (9)PF6, was isolated from complex (4)PF6 in the process of crystallization. All these complexes are isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV–Vis spectroscopy. The molecular structures of [2]PF6 and [9]PF6 have been established by single-crystal X-ray structure analyses.  相似文献   

6.
The ligands [Ph2P(O)NP(E)Ph2] (E=S I; E=Se II) can readily be complexed to a range of palladium(II) starting materials affording new six-membered Pd–O–P–N–P–E palladacycles. Hence ligand substitution reaction of the chloride complexes [PdCl2(bipy)] (bipy=2,2′-bipyridine), [{Pd(μ-Cl)(L–L)}2] (HL–L=C9H13N or C12H13N), [{Pd(μ-Cl)Cl(PMe2Ph)}2] or [PdCl2(PR3)2] [PR3=PPh3; 2PR3=Ph2PCH2CH2PPh2or cis-Ph2PCH=CHPPh2] with either I (or II) in thf or CH3OH gave [Pd{Ph2P(O)NP(E)Ph2-O,E}(bipy)]PF6, [Pd{Ph2P(O)NP(E)Ph2-O,E}(L–L)], [Pd{Ph2P(O)NP(E)Ph2-O,E}Cl(PMe2Ph)] or [Pd{Ph2P(O)NP(E)Ph2-O,E} (PR3)2]PF6 in good yields. All compounds described have been characterised by a combination of multinuclear NMR [31 P{1 H} and 1 H] and IR spectroscopy and microanalysis. The molecular structures of five complexes containing the selenium ligand II have been determined by single-crystal X-ray crystallography. Three different ring conformations were observed, a pseudo-butterfly, hinge and in the case of all three PR3 complexes, pseudo-boat conformations. Within the Pd–O–P–N–P–Se rings there is evidence for π-electron delocalisation.  相似文献   

7.
The new complexes [(η3-Me2CCMeCH2)Pd{η2-Ph2P(S)CHP(S)Ph2] (1), [(η3-Me2CCMeCH2)Pd{η2-OC(CF3) CHCO(C4H3S)}] (2) and [(η3-CH2CMeCH2)Pd{η2-OC(CF3)CHCO(C4H3S)}] (3) have been synthesized by reacting [(η3-allyl)Pd(μ-Cl)]2 with Ph2P(S)CH2P(S)Ph2 and OC(CF3)CH2CO(C4H3S) in the presence of base. All have been characterized by elemental analysis, FT-IR, 1H-n.m.r and FAB-mass spectroscopy. Spectroscopic studies suggest that both ligands are bidentate, forming six-membered Pd-S-P-C-P-S and Pd-O-C-C-C-O palladacycles, the η3-allyl group completing the coordination sphere.  相似文献   

8.
Me2NNS reacts with [Rh(CO)2Cl]2 to produce the complex cis-Rh(SNNMe2)(CO)2Cl (1). The latter undergoes reversible CO substitution by Me2NNS to give the complex trans-Rh(SNNMe2)2(CO)Cl (2a). Complexes 1 and 2a, in solution lose CO and Me2NSS, respectively, to give the complex trans-(μ-Cl)2[Rh(SNNMe2)(CO)]2 (3). Complex 1 can also be prepared by bubbling CO through a CH2Cl2 solution of Rh(SNNMe2)(diene)Cl (diene = 1,5-cyclooctadiene (4a), norbornadiene (4b)) obtained by a bridge-splitting reaction of Me2NNS with [Rh(diene)Cl]2. 1 and 2a react with EPh3 (E = P, As, Sb) to give the complexes trans-Rh(EPh3)2(CO)Cl. The complexes trans-Rh(E′Ph3)2(CO)X (X = Cl, E′ = As, Sb; X = Br, NCS, E′ = As) undergo reversible E′Ph3 displacement upon treatment with Me2NNS to give the complexes trans-Rh(SNNMe2)2(CO)X (X = Cl (2a), Br (2b), NCS (2c)). Oxidative additions of Br2, I2, or HgCl2 to 2a produce stable adducts, while the reaction of 2a with CH3I gives an inseparable mixture of the adduct Rh(SNNMe2)2(CO)(CH3)ClI and the acetyl derivative Rh(SNNMe2)2(CH3CO)ClI. A mixture of the acetyl derivative (μ-Cl)2[Rh(SNNMe2)(CH3CO)I]2 and the adduct (μ-Cl)2[Rh(SNNMe2)(CO)(CH3)I]2 is obtained by treating 1 with CH3I. The IR spectra of all the compounds are consistent with S-coordination of Me2NNS. Because of the restricted rotation around the NN bond, the 1H NMR spectra of the new compounds exhibit two quadruplets in the range 3.5–4.3δ when 4J(HH) = 0.7–0.5 Hz. When 4J(HH) < 0.5 Hz, the perturbing effect of the quadrupolar relaxation of the 14N nucleus obscures the spin-spin coupling and two broad signals are observed in the range 3.6–4δ.  相似文献   

9.
The intracomplex conversion of (2-diphenylphosphanoethyl)cyclopentadienyl zirconium and titanium complexes into the corresponding 2-phosphinothioyl and 2-phosphinoyl derivatives, viz., (η5-C5H5)[η 5-C5H4CH2CH2P(S)Ph2]ZrCl2, [η5-C5H4CH2CH2P(S)Ph2]ZrCl3, [η51C5H4CH2CH2P(O)Ph2]ZrCl3·THF, and [η51-C5H4CH2CH2P(O)Ph2]TiCl3 (7), was performed. The NMR spectroscopy data revealed the following order of the coordination ability of the functional groups with respect to the Zr center: Ph2P=O > Ph2P > Ph2P=S. An analogous order was found for the monodentate ligands (Ph3P=O > Ph3P > Ph3P=S) with respect to (η5-C5H5)ZrCl3. The molecular structure of complex 7 was established by X-ray diffraction analysis. Coordination of the Ph2P=O group to the titanium atom was found retained both in the crystalline state and solution.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 116–122, January, 2005.  相似文献   

10.
Tetraphenylarsonium and tetramethylammonium salts of the complex anions Ph3Sn(N3)?2, Ph3Sn(N3)(NCS)?, Me2Sn(N3)2?4 and Ph2Sn(N3)2(NCS)2?2 have been synthesized, and the solid state configuration of the complex anions has been studied by Mössbauer and vibrational spectroscopies. Trigonal bipyramidal structures are advanced for the Ph3SnIV derivatives, with equatorial SnC3 and apical pseudohalide ligands, while the R2SnIV compounds are assumed to be trans-octahedral species. The NCS? ligands are observed to be N-bonded to SnIV. Conductance and PMR (for the Me2SnIV compound) data suggest the presence of the complex anions also in solution phases.  相似文献   

11.
The reaction of RuTp(COD)Cl (1) with PPh2Pri and terminal alkynes HCCR (R=C6H5, C4H3S, C6H4OMe, Fc, C6H4Fc, C6H9) affords the neutral vinylidene complexes RuTp(PPh2Pri) (Cl)(=C=CHR) (2a2f) in high yields. These complexes do not react with MeOH to give methoxy carbene complexes of the type RuTp(PPh2Pri)(Cl)(=C(OMe)CH2R), but react with oxygen to yield the CO complex RuTp(PPh2R)(Cl)(CO) (3). The structures of 2b, 2f, and 3 have been determined by X-ray crystallography.  相似文献   

12.
Summary. The reaction of RuTp(COD)Cl (1) with PPh2Pri and terminal alkynes HCCR (R=C6H5, C4H3S, C6H4OMe, Fc, C6H4Fc, C6H9) affords the neutral vinylidene complexes RuTp(PPh2Pri) (Cl)(=C=CHR) (2a2f) in high yields. These complexes do not react with MeOH to give methoxy carbene complexes of the type RuTp(PPh2Pri)(Cl)(=C(OMe)CH2R), but react with oxygen to yield the CO complex RuTp(PPh2R)(Cl)(CO) (3). The structures of 2b, 2f, and 3 have been determined by X-ray crystallography.  相似文献   

13.
On the Oxidative Addition of 1-Halogenalk-1-ynes – Synthesis and Structure of Phenylalkynylpalladium Complexes [Pd(PPh3)4] ( 2 ) reacts with IC≡CPh and ClC≡CPh in the sense of an oxidative addition to give trans-[Pd(C≡CPh)X(PPh3)2] (X = I: 3 a , X = Cl: 3 b ). As side products trans-[PdX2(PPh3)2] (X = I: 4 a , X = Cl: 4 b ; < 10%) and PhC≡C–C≡CPh ( 5 ; X = I: ca 30%, X = Cl: < 4%) are formed. 3 a and 3 b were characterized by NMR (1H, 13C, 31P) and IR spectroscopies as well as by X-ray single-crystal structure analyses. In the crystals of 3 a and 3 b isolated molecules were found. The Pd–C≡C–Ph unit is linear in 3 a and approximately linear in 3 b [Pd–C≡C 174.2(6)°, C≡C–C 179,0(7)°].  相似文献   

14.
Titanocene–bis(trimethylsilyl)ethyne complexes [Ti(η5-C5Me4R)22-Me3SiCCSiMe3)], where R=benzyl (Bz, 1a), phenyl (Ph, 1b) and p-fluorophenyl (FPh, 1c), thermolyse at 150–160°C to give products of double C---H activation [Ti(η5-C5Me4Bz){η34-C5Me3(CH2)(CHPh)}] (2a), [Ti(η5-C5Me4Bz){η34-C5Me2Bz(CH2)2}] (2a′), [Ti(η5-C5Me4Ph){η34-C5Me2Ph(CH2)2}] (2b), and [Ti(η5-C5Me4FPh){η34-C5Me2FPh(CH2)2}] (2c). In the presence of 2,2,7,7-tetramethylocta-3,5-diyne (TMOD) the thermolysis affords analogous doubly tucked-in compounds bearing one η34-allyldiene and one η5-C5Me4R ligand having TMOD attached by its C-3 and C-6 carbon atoms to the vicinal methylene groups adjacent to the substituent R (R=Bz (3a), Ph (3b), and FPh (3c)). Compound 3a is smoothly converted into air-stable titanocene dichloride [TiCl25-C5Me2Bz(CH2CH(t-Bu)CH=CHCH(t-Bu)CH2)}(η5-C5Me4Bz)] (4a) by a reaction with hydrogen chloride. Yields in both series of doubly tucked-in complexes decrease in the order of substituents: BzPh>FPh. Crystal structures of 1c, 2a, 2b, and 3b have been determined.  相似文献   

15.
The platina‐β‐diketones [Pt2{(COR)2H}2(μ‐Cl)2] ( 1 , R = Me a , Et b ) react with phosphines L in a molar ratio of 1 : 4 through cleavage of acetaldehyde to give acylplatinum(II) complexes trans‐[Pt(COR)Cl(L)2] ( 2 ) (R/L = Me/P(p‐FC6H4)3 a , Me/P(p‐CH2=CHC6H4)Ph2 b , Me/P(n‐Bu)3 c , Et/P(p‐MeOC6H4)3 d ). 1 a reacts with Ph2As(CH2)2PPh2 (dadpe) in a molar ratio of 1 : 2 through cleavage of acetaldehyde yielding [Pt(COMe)Cl(dadpe)] ( 3 a ) (configuration index: SP‐4‐4) and [Pt(COMe)Cl(dadpe)] (configuration index: SP‐4‐2) ( 3 b ) in a ratio of about 9 : 1. All acyl complexes were characterized by 1H, 13C and 31P NMR spectroscopy. The molecular structures of 2 a and 3 a were determined by single‐crystal X‐ray diffraction. The geometries at the platinum centers are close to square planar. In both complexes the plane of the acyl ligand is nearly perpendicular to the plane of the complex (88(2)° 2 a , 81.2(5)° 3 a ).  相似文献   

16.
The mixed phosphine–phosphine oxide Ph2PCH2CH2P(O)Ph2 (dppeO) reacts with either trans-[PdCl2(PhCN)2], Na2[PdCl4] or trans-[PdCl2(DMSO)2] to give trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2]. Treatment of the latter with the metal chlorides, MCl2 · nH2O (M = Mn, Cu, Co, Zn, Hg; n = 4, 2, 6, 1, 0, respectively) or with Me2SnCl2 or SnCl4 · 5H2O, or with UO2(NO3)2 · 6H2O or UO2(OAc)2 · 2H2O gives heterobimetallic complexes: trans-[PdCl2{-Ph2PCH2CH2P(O)Ph2}2MX2] · nH2O. The cobalt complex (MX2 = CoCl2) was unstable in solution (MeOH or EtOH/CHCl3), and reverts to trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] and CoCl2. trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] does not apparently react with either NiCl2 · 6H2O or CdCl2 · 2.5H2O.  相似文献   

17.
The reactions of the optically active geometric isomers of the platinum(II) complex (–)-[Pt(Me-p-TolSO)(Py)Cl2] with several nucleophilic reagents (Py, Ph3PS, Ph3P, Ph3As, and Me2SO) were studied by optical rotatory dispersion, IR spectroscopy, and 1H and 31P NMR spectroscopy. A mechanism for the reaction is proposed.  相似文献   

18.
Crystal Structures and Vibrational Spectra of Tetrahalogenoacetylacetonatoosmates(IV), [OsX4(acac)]?, X ? Cl, Br, I By reaction of the hexahalogenoosmates(IV) with acetylacetone the tetrahalogenoacetylacetonatoosmates(IV) [OsX4(acac)]? (X = Cl, Br, I) are formed, which have been purified by chromatography and precipitated from aqueous solution as tetraphenylphosphonium (Ph4P) or cesium salts. X-ray structure determinations on single crystals have been performed of (Ph4P)[OsCl4(acac)] ( 1 ) (triclinic, space group P1 , a = 9.9661(6), b = 11.208(2), c = 13.4943(7) Å, α = 101.130(9), β = 91.948(6), γ = 96.348(8)°, Z = 2), (Ph4P)[OsBr4(acac)] ( 2 ) (monoclinic, space group P21/n, a = 9.0251(8), b = 12.423(2), c = 27.834(2) Å, β = 94.259(7)°, Z = 4) and (Ph4P)[OsI4(acac)] ( 3 ) (monoclinic, space group P21/c, a = 18.294(3), b = 10.664(2), c = 18.333(3) Å, β = 117.68(2)°, Z = 4). Due to the increasing trans influence in the series O < Cl < Br < I the Os? O. distances of O.? Cl? X′ axes are lengthened and the OsO. stretching vibrations are shifted to lower frequencies. The Os? X′ bond lenghts are shorter as compared with symmetrically coordinated X? Os? X axes.  相似文献   

19.
Neutral [Ru(η6-arene)Cl2{Ph2P(CH2)3SPh-κP}] (arene = benzene, indane, 1,2,3,4-tetrahydronaphthalene: 2a, 2c and 2d) and cationic [Ru(η6-arene)Cl(Ph2P(CH2)3SPh-κPS)]X complexes (arene = mesitylene, 1,4-dihydronaphthalene; X = Cl: 3b, 3e; arene = benzene, mesitylene, indane, 1,2,3,4-tetrahydronaphthalene, and 1,4-dihydronaphthalene; X = PF6: 4a–4e) complexes were prepared and characterized by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy and also by single-crystal X-ray diffraction analyses. The stability of the complexes has been investigated in DMSO. Complexes have been assessed for their cytotoxic activity against 518A2, 8505C, A253, MCF-7 and SW480 cell lines. Generally, complexes exhibited activity in the lower micromolar range; moreover, they are found to be more active than cisplatin. For the most active ruthenium(II) complex, 4b, bearing mesitylene as ligand, the mechanism of action against 8505C cisplatin resistant cell line was determined. Complex 4b induced apoptosis accompanied by caspase activation.  相似文献   

20.
Two families of arene ruthenium oxinato complexes of the types [(η6-arene)Ru(η2-N,O-L)Cl] and [(η6-arene)Ru(η2-N,O-L)(OH2)]+ have been synthesized from the dinuclear precursors [(η6-arene)RuCl2]2 (arene = para-cymeme or hexamethylbenzene) and the corresponding oxine LH (LH = 8-hydroxyquinoline, 5-chloro-8-hydroxyquinoline, 5,7-dichloro-8-hydroxyquinoline, 5-nitro-8-hydroxyquinoline, 5,7-dimethyl-8-hydroxyquinoline, 5,7-dichloro-2-methyl-8-hydroxyquinoline). The molecular structures of the neutral chloro complexes [(η6-C6Me6)Ru(η2-N,O-L)Cl] (LH = 8-hydroxyquinoline, 5,7-dichloro-2-methyl-8-hydroxyquinoline) and [(η6-MeC6H4Pri)Ru(η2-N,O-L)Cl] (LH = 5,7-dichloro-2-methyl-8-hydroxyquinoline) as well as those of the cationic aqua derivatives [(η6-MeC6H4Pri)Ru(η2-N,O-L)(OH2)]+ (LH = 8-hydroxyquinoline, 5,7-dimethyl-8-hydroxyquinoline), isolated as the tetrafluoroborate salts, show in all cases a piano-stool arrangement with the arene ligand, the chelating oxinato ligand and the chloro or the aqua ligand surrounding the ruthenium center in a pseudo-tetrahedral fashion. The analogous reaction of [(η6-MeC6H4Pri)RuCl2]2 with other N,O-chelating ligands such as 2-pyridinemethanol or tetrahydrofurfurylamine did not give the expected analogs but resulted in the formation of the complexes [(η6-MeC6H4Pri)Ru(η2-NC5H4CH2OH)Cl]+ and [(η6-MeC6H4Pri)Ru(η1-NHCH2C4H3O)Cl2]. The neutral and cationic complexes of the types [(η6-arene)Ru(η2-N,O-L)Cl] and [(η6-arene)Ru(η2-N,O-L)(OH2)]+ have been found to catalyze the hydrogenation of carbon dioxide to give formate in alkaline aqueous solution with catalytic turnovers up to 400.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号