首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have taken (dA)5, (dT)5, and (dA)5·(dT)5 as model systems to study concerted effects of base pairing and stacking on excited‐state nature of DNA oligonucleotides using density functional theory (DFT) and time dependent DFT methods. The spectroscopic states are determined to be of a partial A → A charge‐transfer nature in the A·T oligonucleotides. The T → T charge‐transfer transitions produce dark states, which are hidden in the energy region of the steady‐state absorption spectra. This is different from the previous assignment that the T → T charge‐transfer transition is responsible for a shoulder at the red side of the first strong absorption band. The A → T charge‐transfer states were predicted to have relatively high energies in the A·T oligonucleotides. The present calculations predict that the T → A charge‐transfer states are not involved in the spectra and excited‐state dynamics of the A·T oligonucleotides. In addition, the influence of base pairing and stacking on the nature of the 1nπ* and 1ππ* states are discussed in detail. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
A series of platinum(II) terpyridyl alkynyl complexes, [Pt{4'-(4-R1-C6H4)terpy}(C[triple chemical bond]C-C6H4-R(2)-4)]ClO4 (terpy=2,2':6',2'-terpyridyl; R1=R2=N(CH3)2 (1); R1=N(CH3)2, R2=N-[15]monoazacrown-5 (2); R1=CH3, R2=N(CH3)2 (3); R1=N(CH3)2, R2=H (4); R1=CH3, R2=H (5)), has been synthesized and the photophysical properties of the complexes have been examined through measurement of their UV/Vis absorption spectra, photoluminescence spectra, and transient absorptions. Complex 3 shows a lowest-energy absorption corresponding to a ligand-to-ligand charge-transfer (LLCT) transition from the acetylide to the terpyridyl ligand, whereas 4 shows an intraligand charge-transfer (ILCT) transition from the pi orbital of the 4'-phenyl group to the pi* orbital of the terpyridyl. Upon protonation of the amino groups in 3 and 4, their lowest-energy excited states are switched to dpi(Pt)-->pi*(terpy) metal-to-ligand charge-transfer (MLCT) states. The lowest-energy absorption for 1 and 2 may be attributed to an LLCT transition from the acetylide to the terpyridyl. Upon addition of an acid to a solution of 1 or 2, the amino group on the acetylide is protonated first, followed by the amino group on the terpyridyl. Thus, the lowest excited state of 1 and 2 can be successively switched from the LLCT state to the ILCT state and then to the MLCT state by controlling the amount of the acid added. Such switches in the excited state are fully reversible upon subsequent addition of a base to the solution. Sequential addition of alkali metal or alkaline earth metal ions and then an acid to a solution of 2 also leads to switching of its lowest excited state from the LLCT state, first to the ILCT state and then to the MLCT state. All of the complexes exhibit a transient absorption of the terpyridyl anion radical, which is present in all of the LLCT, ILCT, and MLCT states. However, the shape of the transient absorption spectrum depends on both the substitution pattern on the terpyridyl moiety and the nature of the excited state.  相似文献   

3.
Electronic singlet excitations of stacked adenine-thymine (AT) and guanine-cytosine (GC) complexes have been investigated with respect to local excitation and charge-transfer (CT) characters. Potential energy curves for rigid displacement of the nucleobases have been computed to establish the distance dependence of the CT states. The second-order algebraic diagrammatic construction [ADC(2)] method served as reference approach for comparison to a selected set of density functionals used within the time-dependent density functional theory (TD-DFT). Particular attention was dedicated to the performance of the recently developed family of M06 functionals. The calculations for the stacked complexes show that at the ADC(2) level, the lowest CT state is S(6) for the AT and as S(4) for the GC pair. At the reference geometry, the actual charge transferred is found to be 0.73 e for AT. In case of GC, this amount is much smaller (0.17 e). With increasing separation of the two nucleobases, the CT state is strongly destabilized. The M06-2X version provides a relatively good reproduction of the ADC(2) results. It avoids the serious overstabilization and overcrowding of the spectrum found with the B3LYP functional. On the other hand, M06-HF destabilizes the CT state too strongly. TD-DFT/M06-2X calculations in solution (heptane, isoquinoline, and water) using the polarizable continuum model show a stabilization of the CT state and an increase in CT character with increasing polarity of the solvent.  相似文献   

4.
Summary The dipole and quadrupole moments and the dipole polarizability tensor components are calculated for the1 B 1 and3 B 1 excited states of the water molecule by using the complete active space (CAS) SCF method and an extended basis set of atomic natural orbitals. The dipole moment in the lowest1 B 1 (0.640 a.u.) and3 B 1 (0.416 a.u.) states is found to be antiparallel to that in the ground electronic state of H2O. The shape of the quadrupole moment ellipsoid is significantly modified by the electronic excitation to both states investigated in this paper. All components of the excited state dipole polarizability tensor increase by about an order of magnitude compared to their values in the ground electronic state. The present results are used to discuss some aspects of intermolecular interactions involving molecules in their excited electronic states.  相似文献   

5.
The singlet and triplet excited states of hydrogen cyanide have been computed by using the complete active space self-consistent field and completed active space second order perturbation methods with the atomic natural orbital (ANO-L) basis set. Through calculations of vertical excitation energies, we have probed the transitions from ground state to valence excited states, and further extensions to the Rydberg states are achieved by adding 1s1p1d Rydberg orbitals into the ANO-L basis set. Four singlet and nine triplet excited states have been optimized. The computed adiabatic energies and the vertical transition energies agree well with the available experimental data and the inconsistencies with the available theoretical reports are discussed in detail.  相似文献   

6.
Photochromic dimethyldihydropyrenes substituted with electron-withdrawing pyridinium groups have shown an increase of photo-induced ring-opening efficiency and a light sensitivity that is red shifted relative to the unsubstituted compound. However, a recently synthesized tetrapyridinium derivative showed a considerable decrease of the photo-isomerization quantum yield relative to the monopyridinium and bispyridinium derivatives. We provide a rationale for this unexpected photochemical behavior based on the comparative theoretical investigations of the relevant excited states of these systems. In particular, we found that the nature and order of the lowest two excited states depend on the number of pyridinium groups and on the symmetry of the system. While the lowest S1 excited state is photo-active in the monopyridinium and bispyridinium derivatives, the photo-isomerizing state is S2 in the reference unsubstituted compound and both S1 and S2 lead to isomerization in the tetrapyridinium derivative, albeit with a low efficiency. In the latter derivative, the photo-isomerization is hindered by the particular S1/S2 conical intersection topology.  相似文献   

7.
The intermolecular interactions of the photodamaged cyclobutane pyrimidine dimer (CPD) lesion with adjacent nucleobases in the native intrahelical DNA double strand are investigated at the level of density functional theory symmetry‐adapted perturbation theory (DFT‐SAPT) and compared to the original (or repaired) case with pyrimidines (TpT) instead of CPD. The CPD aggregation is on average destabilized by about 6 kcal mol?1 relative to that involving TpT. The effect of destabilization is asymmetric, that is, it involves a single H‐bonding (Watson–Crick (WC) type) base‐pair interaction.  相似文献   

8.
9.
The time-dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen-bonded intramolecular charge-transfer (ICT) excited state of 4-dimethylaminobenzonitrile (DMABN) in methanol (MeOH) solvent. We demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O formed between DMABN and MeOH can induce the C[triple bond]N stretching mode shift to the blue in both the ground state and the twisted intramolecular charge-transfer (TICT) state of DMABN. Therefore, the two components at 2091 and 2109 cm(-1) observed in the time-resolved infrared (TRIR) absorption spectra of DMABN in MeOH solvent were reassigned in this work. The hydrogen-bonded TICT state should correspond to the blue-side component at 2109 cm(-1), whereas not the red-side component at 2091 cm(-1) designated in the previous study. It was also demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O is significantly strengthened in the TICT state. The intermolecular hydrogen bond strengthening in the TICT state can facilitate the deactivation of the excited state via internal conversion (IC), and thus account for the fluorescence quenching of DMABN in protic solvents. Furthermore, the dynamic equilibrium of these electronically excited states is explained by the hydrogen bond strengthening in the TICT state.  相似文献   

10.
The structural and electronic properties of perylene molecule, dimers, and excimers have been computationally studied. The present work represents the first systematic study of perylene molecule and dimer forms by means of long‐range corrected time‐dependent density functional theory (TDDFT) approaches. Initially, the study explores the photophysical properties of the molecular species. Vertical transitions to many excited singlet states have been computed and rationalized with different exchange‐correlation functionals. Differences between excitation energies are discussed and compared to the absorption spectrum of perylene in gas phase and diluted solution. De‐excitation energy from the relaxed geometry of the lowest excited singlet is in good agreement with the experimental fluorescence emission. Optimization of several coplanar forms of the perylene pair prove that, contrary to generalized gradient approximation (GGA) and hybrid exchange‐correlation functionals, corrected TDDFT is able to bind the perylene dimer in the ground state. Excitation energies from different dimer conformers point to dimer formation prior to photoexcitation. The fully relaxed excimer geometry belongs to the perfectly eclipsed conformation with D2h symmetry. The excimer equilibrium intermolecular distance is shorter than the separation found for the ground state, which is an indication of stronger interchromophore interaction in the excimer state. Excimer de‐excitation energy is in rather good agreement with the excimer band of perylene in concentrated solution. The study also scans the energy profiles of the ground and lowest excited states along several geometrical distortions. The nature of the interactions responsible for the excimer stabilization is explored in terms of excitonic and charge resonance contributions. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The potential surfaces of the two valence ionic singlet excited states of twisted ethylene are known to exhibit a conical intersection for a twist angle of the double bond near 82°, and no pyramidalization of the CH2 groups. The factors responsible for the stabilization of the symmetric excited state near 90° are shown to be ( )2 and ( *)2 double excitations. The analysis is performed in the Quasi Degenerate Perturbation Theory formalism. The analogy with the 1 A g 3 B u ordering problem of the diradical ground and lower triplet states through a double spin polarization of the system is established.  相似文献   

12.
The low‐lying electronic states of tetrafluoroethylene (C2F4) are characterized theoretically for the first time using equation‐of‐motion coupled cluster theory (EOM‐CCSD), and complete active space self‐consistent field (CASSCF) and second‐order perturbation theory (CASPT2). Computations are performed for vertical excitation energies, equilibrium geometries, minimum‐energy conical intersections, and potential energy curves along three geometric coordinates: 1) twisting of the F?C?C?F dihedral angle, 2) pyramidalization of the CF2 group, and 3) migration of a fluorine atom resulting in an ethylidene‐like (CF3CF) structure. The results suggest two relaxation pathways from the Rydberg‐3s excited electronic state to the ground state. These relaxation pathways are discussed in conjunction with the femtosecond photoionization spectroscopy results of Trushin et al. [ChemPhysChem­ 2004 , 5, 1389].  相似文献   

13.
The lifetimes of benzophenone in the higher triplet excited state (BP(T(n))) and several BP derivatives in the T(n) states were measured directly to be tau(T(n))=37+/-7 ps and 20-33 ps, respectively, by using the nanosecond-picosecond (ns-ps) two-color/two-laser flash photolysis method. Based on the direct measurements of tau(T(n)) of BP(T(n)), the triplet energy transfer (TET) from BP(T(n)) to quenchers (Q), such as carbon tetrachloride (CCl4), benzene (Bz), and p-dichlorbenzene (DCB), was investigated. The fast TET from BP(T(n)) to Q can be attributed to the lifetime-dependent quenching process, according to the Ware theoretical model of the bimolecular energy transfer reaction. The contribution of the lifetime-dependent term on k(TET) was 27, 60, and 86% for CCl4, Bz, and DCB as the Q of BP(T(n)), respectively, indicating that the TET from BP(T(n)) to Q is influenced not only by tau(T(n)), but also by the size of Q.  相似文献   

14.
15.
Using the complete active space self-consistent field method with a large atomic natural orbital basis set, 10, 13, and 9 electronic states of the OClO radical, OClO(+) cation, and OClO(-) anion were calculated, respectively. Taking the further correlation effects into account, the second-order perturbation (CASPT2) calculations were carried out for the energetic calibration. The photoelectron spectroscopy of the OClO radical and OClO(-) anion were extensively studied in the both case of the adiabatic and vertical ionization energies. The calculated results presented the relatively complete assignment of the photoelectron bands of the experiments for OClO and its anion. Furthermore, the Rydberg states of the OClO radical were investigated by using multiconfigurational CASPT2 (MS-CASPT2) theory under the basis set of large atomic natural orbital functions augmented with an adapted 1s1p1d Rydberg functions that have specially been built for this study. Sixteen Rydberg states were obtained and the results were consistent with the experimental results.  相似文献   

16.
The spatial and electronic structure of styrene and α-methylstyrene monomer molecules and their complexes with living polymers in the ground singlet state (S 0) and excited singlet (S 1) and triplet (T 1) states has been studied by RHF, ROHF/6-31G*, and DH quantum-chemical methods. The mechanism of anionic polymerization is considered in the context of the concept of electronic excitation in an elementary process. The excited states of (S·T)1 biradical type are characterized by low energies (6–15 kcal/mole), which have the sense of activation energies E a of chain propagation. Calculation gave higher values of E a for free C? anions compared to those for C?M+ ion pairs, which indicates that anions show lower chemical activity in the general polymerization process.  相似文献   

17.
18.
In the effective mass approximation, we calculated the wave functions and some energy states of helium and helium‐like quantum dots (QDs) with impurity charges Z = 0, 1, 2, 3, and 4. In addition, we carried out the ionization energies of these QDs as a function of dot radius, and we investigated the influence of impurity on the ionization energy. We utilized the method that is a combination of quantum genetic algorithm (QGA) and Hartree‐Fock Roothaan (HFR). The results are in a good agreement with literature results. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
The possibility of excited‐state protomeric shifts in the biologically important molecule, alloxan, is investigated. We have focused on the S1 and T1 excited states of alloxan and its hydroxy tautomers. Modifications brought in by excitation on the relative stabilities, activation barriers, and optimized geometries, computed at the MNDO, AM1, and PM3 levels of approximation, have been discussed for both excited electronic states. The absorption and fluorescence spectra for the three tautomers are also discussed. Results show significant changes in the geometries on excitation, although the changes are similar for the singlet and triplet excited states. Though the relative stability orders do not change, the 2‐hydroxy tautomer is stabilized, while the 4‐hydroxy tautomer gets destabilized on excitation. The excited states are (n,π*) states, involving the promotion of a nonbonding oxygen lone pair from the CO? CO? CO moiety, which explains why the oxygens of this group become less basic and the 4‐hydroxy tautomer gets destabilized on excitation. However, the activation barriers do not reduce significantly on excitation, and this precludes the possibility of ground‐ or excited‐state proton transfer in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

20.
用从头算方法,在HF/6-31 G^**和CASSCF(8,8)/6-31G^*基组水平上对四氰基乙烯与四甲基乙烯间电子转移的溶剂效应及电荷分离激发态进行了理论计算与研究。通过对给、受体各种几何构型的优化,计算了孤立给、受体之间的电荷分离反应热。在假定碰撞络合物形成过程中给、受体内部结构不发生变化的前提下,通过优化给、受体中心间距的方法,找出了络合物的稳定构型。计算了水溶剂及二氯甲烷溶剂中两种稳定构型络合物的电荷分离激发态,计算结果表明光激发可以直接导致体系的电荷分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号