首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes.  相似文献   

2.
Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE‐C4D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field‐enhanced sample injection, coupled with CE‐C4D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01–0.1 μM (1.7–11.1 μg/L) and sensitivity enhancements of 48‐ to 53‐fold were achieved with the large volume sample stacking‐CE‐C4D method. By performing the field‐enhanced sample injection‐CE‐C4D procedure, excellent LODs down to 0.0005–0.02 μM (0.1–2.2 μg/L) as well as sensitivity enhancements of up to 245‐ to 1002‐fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water.  相似文献   

3.
This work reports the development of a simple and automated method for the quantitative determination of several contaminants (triazine, phenylurea, and phenoxyacid herbicides; carbamate insecticides and industrial chemicals) and their metabolites in human urine with a simplified sample treatment. The method is based on the online coupling of an extraction column with RP LC separation–UV detection; this coupling enabled fast online cleanup of the urine samples, efficiently eliminating matrix components and providing appropriate selectivity for the determination of such compounds. The variables affecting the automated method were optimized: sorbent type, washing solvent and time, and the sample volume injected. The optimized sample treatment reported here allowed the direct injection of large volumes of urine (1500 μL) into the online system as a way to improve the sensitivity of the method; limits of detection in the 1–10 ng/mL range were achieved for an injected volume of 1500 μL of urine, precision being 10% or better at a concentration level of 20 ng/mL. The online configuration proposed has advantages such as automation (all the steps involved in the analysis – injection of the urine, sample cleanup, analyte enrichment, separation and detection – are carried out automatically) with high precision and sensitivity, reducing manual sample manipulation to freezing and sample filtration.  相似文献   

4.
The use of transient moving chemical reaction boundary (tMCRB) was investigated for the on‐line preconcentration of native amino acids in heart‐cutting 2D‐CE with multiple detection points using contactless conductivity detection. The tMCRB focusing was obtained by using ammonium formate (pH 8.56) as sample matrix and acetic acid (pH 2.3) as a BGE in the first dimension of the heart‐cutting 2D‐CE. Different experimental parameters such as the injected volume and the concentration in ammonium formate were optimized for improving the sensitivity of detection. A stacked fraction from the first dimension was selected, isolated in the capillary, and then separated in the second dimension in the presence of a chiral selector ((+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid). This on‐line tMCRB preconcentration coupled with heart‐cutting 2D‐CE was applied with success to the chiral separation of D ,L ‐phenylalanine, and D ,L ‐threonine in a mixture of 22 native amino acids. The sample mixture was diluted in 0.8 M of ammonium formate, and injected at a concentration of 2.5 μM for each enantiomer with a volume corresponding to 10% of the total capillary volume. An LOD (S/N=3) of 2 μM was determined for L ‐threonine.  相似文献   

5.
Online sample concentration of acidic drugs by transient isotachophoresis (t-ITP) with the injection of a base is described in capillary zone electrophoresis (CZE). A positively coated capillary was conditioned with background electrolyte (ammonium acetate at pH 6). A long plug of sample solution (S) prepared in ammonium acetate was then hydrodynamically injected followed by the base (tetrapropylammonium hydroxide). A negative voltage was applied and caused the hydroxide ions from the base to penetrate the S zone and created a pH junction that swept through the S zone. The analytes stack at the junction where the mechanism of focusing was transient ITP with the acetate and hydroxide ions as leading and terminating ions, respectively. The concentrated analytes separated in co-EOF CZE once the hydroxide was exhausted. The base stacking strategy was tested using hypolipidemic, nonsteroidal anti-inflammatory, and diuretic drugs, and afforded 19-37 improvements in peak height.  相似文献   

6.
《Electrophoresis》2017,38(9-10):1260-1267
In this work, single‐piece fused silica capillaries with two different internal diameter segments featuring different inner surface roughness were prepared by new etching technology with supercritical water and used for volume coupling electrophoresis. The concept of separation and online pre‐concentration of analytes in high conductivity matrix is based on the online large‐volume sample pre‐concentration by the combination of transient isotachophoretic stacking and sweeping of charged proteins in micellar electrokinetic chromatography using non‐ionogenic surfactant. The modified surface roughness step helped to the significant narrowing of the zones of examined analytes. The sweeping and separating steps were accomplished simultaneously by the use of phosphate buffer (pH 7) containing ethanol, non‐ionogenic surfactant Brij 35, and polyethylene glycol (PEG 10000) after sample injection. Sample solution of a large volume (maximum 3.7 μL) dissolved in physiological saline solution was injected into the wider end of capillary with inlet inner diameter from 150, 185 or 218 μm. The calibration plots were linear (R 2 ∼ 0.9993) over a 0.060–1 μg/mL range for the proteins used, albumin and cytochrome c. The peak area RSDs from at least 20 independent measuremens were below 3.2%. This online pre‐concentration technique produced a more than 196‐fold increase in sensitivity, and it can be applied for detection of, e.g . the presence of albumin in urine (0.060 μg/mL).  相似文献   

7.
Arnett SD  Lunte CE 《Electrophoresis》2003,24(11):1745-1752
Capillary electrophoresis has been widely used for the analysis of physiological samples such as plasma and microdialysate. However, sample destacking can occur during the analysis of these high-ionic strength samples, resulting in poor separation efficiency and reduced sensitivity. A technique termed pH-mediated stacking of anions (base stacking) has previously been developed to analyze microdialysate samples and achieve on-line preconcentration of analytes by following sample injection with an injection of sodium hydroxide. In this work, the mechanism of base stacking was investigated. Peak efficiency was shown to be a function of background electrolyte and sample ionic strength. Analytes representing several classes of compounds with a wide range of mobilities were used to study the effects of multiple parameters on sample stacking. The length of hydroxide injection required for stacking was shown to be dependent on analyte mobility and the type of amine background electrolyte used. Combinations of electrokinetic and hydrodynamic injections of sample and hydroxide were examined and it was concluded that although stacking could be achieved with several injection modes, electrokinetic injection of both sample and hydroxide was most effective for sample stacking. The mechanism of pH-mediated stacking for each of these modes is presented.  相似文献   

8.
Electrophoretic injection bias in a microchip valving scheme   总被引:2,自引:0,他引:2  
The pinched injection strategy, implemented on microfabricated fluidic devices (microchips), was investigated for an electrophoretic injection bias. Both the sample loading and dispensing steps were found to contribute to the injection bias whereby neutral species were injected preferentially to anionic species. In the sample loading step, neutral species filled a larger volume in the cross intersection than anionic species. Similarly, in the dispensing step, a larger volume of neutral analyte was injected than anionic analyte. Up to a 27% difference in injected volumes was observed. Fluorescently labeled amino acids were used as model analytes.  相似文献   

9.
An experimental injector for HPLC microcolumns and a 3-nl conductivity detector connected directly to the injector outlet with a 19-nl tube were used to study injector dispersion, guide the design of improved injectors, and suggest appropriate injection techniques. With regard to the small injection volumes required when no on-column concentration technique is used, we show that in some circumstances: (i) there are two volumes to be considered, the sample volume (that which is intended to be injected) and the effective injection volume (that which contains all the sample after it has completely emerged from the injector). Due to dispersion, the latter is often many times the former. An injector performance factor is defined as the ratio of the two volumes. (ii) A smaller sample chamber volume in an injector does not necessarily produce a proportionately smaller effective injection volume, in which case there is a reduction of peak height that degrades sensitivity without a commensurate reduction in peak width that would improve resolution. (iii) Adjusting the geometry of the sample chamber and stator passage can significantly improve injector performance, as illustrated for sample volumes from 2 nl to 1 microl. (iv) In some cases, reducing the diameter of an injector passageway in an attempt to reduce dispersion actually causes performance to worsen.  相似文献   

10.
A capillary electrophoresis-time of flight-mass spectrometry (CE-TOF-MS) method for the analysis of amino acids in human urine was developed. Capillaries noncovalently coated with a bilayer of Polybrene (PB) and poly(vinyl sulfonate) (PVS) provided a considerable EOF at low pH, thus facilitating the fast separation of amino acids using a BGE of 1 M formic acid (pH 1.8). The PB-PVS coating proved to be very consistent yielding stable CE-MS patterns of amino acids in urine with favorable migration time repeatability (RSDs <2%). The relatively low sample loading capacity of CE was circumvented by an in-capillary preconcentration step based on pH-mediated stacking allowing 100-nL sample injection (i.e. ca. 4% of capillary volume). As a result, LODs for amino acids were down to 20 nM while achieving satisfactory separation efficiencies. Preliminary validation of the method with urine samples showed good linear responses for the amino acids (R(2) >0.99), and RSDs for peak areas were <10%. Special attention was paid to the influence of matrix effects on the quantification of amino acids. The magnitude of ion suppression by the matrix was similar for different urine samples. The CE-TOF-MS method was used for the analysis of urine samples of patients with urinary tract infection (UTI). Concentrations of a subset of amino acids were determined and compared with concentrations in urine of healthy controls. Furthermore, partial least squares-discriminant analysis (PLS-DA) of the CE-TOF-MS dataset in the 50-450 m/z region showed a distinctive grouping of the UTI samples and the control samples. Examination of score and loadings plot revealed a number of compounds, including phenylalanine, to be responsible for grouping of the samples. Thus, the CE-TOF-MS method shows good potential for the screening of body fluids based on the analysis of endogenous low-molecular weight metabolites such as amino acids and related compounds.  相似文献   

11.
This paper describes the use of reversed-phase, reversed-polarity head-column field-amplified sample stacking (HCFASS) for on-line sample concentration in conventional capillary electrophoresis. The effective stacking efficiency was determined as a function of sodium hydroxide concentration in the sample matrix. Results concur with theoretical predictions where stacking efficiency depends on the conductivity (electric field strength) and electrophoretic mobility in the sample matrix solution. Fluorescein isothiocyanate-derivatized aniline and 2,4-dimethylaniline were dissolved in sodium hydroxide (800 microM), separated in a phosphate running buffer (0.05 M, pH 9.0) and detected utilising laser-induced fluorescence. The use of reversed-phase, reversed-polarity HCFASS with laser-induced fluorescence detection yielded sensitivity improvements with respect to normal injection schemes in excess of three orders of magnitude, and a limit of detection as low as 10(-13) M.  相似文献   

12.
A method based on poly (methacrylic acid‐co‐ethylene glycol dimethacrylate) monolith microextraction and octadecylphosphonic acid‐modified zirconia‐coated CEC followed by field‐enhanced sample injection preconcentration technique was proposed for sensitive CE‐UV analysis of six antidepressants (doxepin, clozapine, imipramine, paroxetine, fluoxetine and chlorimipramine) in human plasma and urine. A poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic capillary column was introduced for the extraction of antidepressants from urine and plasma samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the desorption solvent, which normally provided an excellent medium to ensure direct compatibility for field‐enhanced sample injection in CE, was analyzed by CE directly. By the use of alkylphosphonate‐modified zirconia‐coated CEC for separation of the basic compounds of antidepressants, high separation efficiency and resolution were achieved because that both hydrophobic interaction between analytes and alkylphosphonate‐modified zirconia coat and electrophoretic effect work on the separation of antidepressants. The best separation was achieved using a buffer composed of 0.3 M ammonium acetate (adjusted to pH 4.5 with 1 M acetic acid) and 35% ACN v/v, with a temperature and voltage of 20°C and 20 kV, respectively. By applying both preconcentration procedures, LODs of 11.4–51.5 and 3.7–17.0 μg/L were achieved for the six antidepressants in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range of 50–5000 μg/L in plasma and urine sample.  相似文献   

13.
A transient micellar phase extractor using CTAB was described for the online sample concentration of various anionic analytes (drugs and herbicides) in CE. Stacking and separation was performed at neutral pH in coelectroosmotic flow in a hexadimethrine bromide coated fused‐silica capillary. A micellar plug (e.g. 10 mM CTAB) was injected prior to hydrodynamic injection of the analytes prepared in aqueous organic solvent (e.g. with 30% ACN). In the presence of an electric field, the micelles interacted with the anions inside the capillary. This was followed by selective analyte focusing via the mechanism of micelle to solvent stacking. The micelles acted as transient extractor because the stacking ends when the injected micelles completely migrated through the boundary between the sample and micellar plug. Fundamental studies were performed (effect of surfactant concentration, etc.) and the technique yielded 13‐ to 30‐fold improvements in peak height. A stacking CE method in conjunction with liquid–liquid extraction was also tested for the detection of the herbicides fenoprop and mecoprop in fortified drinking water at analyte concentration levels relevant to Australian Drinking Water Guidelines.  相似文献   

14.
A further improvement of electrokinetic supercharging (EKS) methodology has been proposed, with the objective to enhance the sensitivity of the conventional CZE-UV method down to a single-digit part per trillion (ppt) level. The advanced EKS procedure is based on a novel phenomenon displaying the formation of a zone with an increased concentration of the hydrogen ion, capable to perform the function of a terminator, behind the sample zone upon electrokinetic injection. In combination with a visualizing co-ion of BGE, protonated 4-methylbenzylamine, acting as the leading ion, such system-induced terminator a effected the transient ITP state to efficiently concentrate cationic analytes prior to CZE. Furthermore, to amass more analyte ions within the effective electric field at the injection stage, a standard sample vial was replaced with an elongated vial that allowed the sample volume to be increased from 500 to 900 μL. Alongside, this replacement made the upright distance between the electrode and the capillary tips prolonged to 40.0 mm to achieve high-efficiency electrokinetic injection. The computer simulation was used for profiling analyte concentration, pH, and field strength in order to delineate formation of the terminator during sample injection. The proposed preconcentration strategy afforded an enrichment factor of 80,000 and thereby the LODs of rare-earth metal ions at the ppt level, e.g. 0.04 nM (6.7 ng/L) for erbium(III).  相似文献   

15.
A simple method for the determination of nitrite and nitrate in human plasma has been developed using CZE with minimal sample preparation. Field‐amplified sample stacking (FASS) was used to achieve submicromolar detection by dilution of the plasma sample with deionized water. In CZE, the separation of nitrite and nitrate was achieved within 10 min without adding EOF modifier. The optimal condition was achieved with 50 mM phosphate buffer at pH 9.3. The ninefold diluted plasma samples were injected hydrodynamically for 40 s into a 60 cm×75 μm id uncoated fused‐silica capillary. The separation voltage was 20 kV (negative potential) and UV detection was performed at 214 nm. The linearity curves for nitrite and nitrate were obtained by the standard addition method. The estimated LODs for nitrite and nitrate in ninefold diluted plasma sample were 0.05 and 0.07 μM, respectively. The LODs for nitrite and nitrate in original plasma samples were 0.45 and 0.63 μM. The intra‐ and inter‐day precisions for both analytes were <2.6% and the recovery ranged between 92.3 and 113.3%. It was found that nitrite was more stable than nitrate in the plasma after the sample preparation. This proposed method was applied to a number of human plasma samples and the measured nitrite and nitrate concentrations in human plasma were consistent with the literature ranges.  相似文献   

16.
王星  张薇  樊柳荫  曹成喜 《色谱》2007,25(5):694-698
采用建立在移动反应界面理论上的体系进行尿样中氧化苦参碱的富集与定量检测。与传统的毛细管电泳相比,体系中引入了富集缓冲溶液(富集相)和分离缓冲溶液(分离相)。优化的条件如下:样品缓冲溶液为20 mmol/L 甲酸钠(用氨水调节pH至10.70),富集缓冲溶液为40 mmol/L 甲酸-甲酸钠(pH 2.60),分离缓冲溶液为100 mmol/L 甲酸-甲酸钠(pH 4.80);样品相压力进样1.4 kPa×3 min,富集相压力进样1.4 kPa×7 min,紫外检测波长210 nm,电压21 kV。氧化苦参碱在2.2~65 mg/L的质量浓度范围内呈良好的线性关系(r=0.9991),检出限为0.74 mg/L,灵敏度比常规毛细管电泳方法提高约70倍,重现性良好。该方法已经成功地应用于尿样中氧化苦参碱的检测。  相似文献   

17.
The electroanalytical characterization and determination of three selected β‐blocker agents, namely propranolol, atenolol and nadolol using cyclic voltammetry and differential pulse voltammetry (DPV) in phosphate buffer solution (pH 2.5) plus 22 % acetonitrile (ACN), was described. The analytes were characterized through their electrooxidation processes on polycrystalline gold electrodes. The analytical determination of the selected molecules was performed using the differential pulse voltammetry (DPV) at pH 2.5. Under DPV conditions, the detection limits (LODs) ranged between 5 μM and 20 μM for propranolol and atenolol, respectively. For all investigated molecules, two well‐defined ranges of linearity Ip vs analyte concentration have been identified which correspond to specific calibration parameters. Calibration graphs (Ip vs concentration) considered in the first interval of linearity, shown correlation coefficients >0.99. A solid phase extraction (SPE) procedure using a polymeric mixed‐mode cationic sorbent (Strata‐X‐C), was studied and optimized. The proposed DPV‐SPE method was successfully applied for the determination of propranolol in several pharmaceutical formulations and urine sample, with results in close agreement with those obtained using traditional liquid chromatography technique coupled with spectrophotometric detection.  相似文献   

18.
The use of a poly(methylmethacrylate) capillary electrophoresis chip, provided with a high sample load capacity separation system (a 8500 nL separation channel coupled to a 500 nL sample injection channel) and a pair of on-chip conductivity detectors, for zone electrophoresis (ZE) determination of oxalate in urine was studied. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the separations performed on the chip. A low pH of the carrier electrolyte (4.0) provided an adequate selectivity in the separation of oxalate from anionic urine constituents and, at the same time, also a sufficient sensitivity in its conductivity detection. Under our working conditions, this anion could be detected at a 8 x 10(-8) mol/L concentration also in samples containing chloride (a major anionic constituent of urine) at 3.5 x 10(-3) mol/L concentrations. Such a favorable analyte/matrix concentration ratio (in part, attributable to a transient isotachophoresis stacking in the initial phase of the separation) made possible accurate and reproducible (typically, 2-5% relative standard deviation (RSD) values of the peak areas of the analyte in dependence on its concentration in the sample) determination of oxalate in 500 nL volumes of 20-100-fold diluted urine samples. Short analysis times (about 280 s), no sample pretreatment (not considering urine dilution) and reproducible migration times of this analyte (0.5-1.0% RSD values) were characteristic for ZE on the chip. This work indicates general potentialities of the present chip design in rapid ZE analysis of samples containing the analyte(s) at high ionic matrix/analyte concentration ratios.  相似文献   

19.
A method for the in-line preconcentration and enantioseparation of clenbuterol by transient isotachophoresis-capillary zone electrophoresis-UV absorbance detection (transient ITP-CZE-UV) has been developed. It implies the use of dimethyl-beta-cyclodextrin as chiral selector and the application of a hydrodynamic counterflow during the ITP step. ITP is used to focus the sample constituents prior to CE whereas a counterpressure counterbalances the electrophoretic migration of the compounds. The sample is then focused and kept stationary in the proximity of the capillary inlet before CZE separation, leading to an extended-volume ITP-CZE system. A new strategy for the fast optimization of the counterpressure has been developed which implies the measurement of the hydrodynamic and electrophoretic velocities of the analyte during ITP. The in-line preconcentration and enantioseparation of clenbuterol selected as model compound was optimized using this method. Salbutamol was chosen as internal reference in order to check the reproducibility of the method. A 173-nl volume of aqueous ample solution was injected which implies an improvement of the injection volume of about 16 and a resolution of 4.8 was obtained for the clenbuterol enantiomers. A concentration detection limit of 10(-6) mol/l was readily achieved for clenbuterol and salbutamol using only 3 min ITP preconcentration in in-line counterflow transient ITP-CZE-UV. Thanks to its fast optimization, the method is applicable to any enantioseparation by means of only five very short preliminary measurements.  相似文献   

20.
TY Ma  TW Vickroy  JH Shien  CC Chou 《Electrophoresis》2012,33(11):1679-1682
A NACE method with laser-induced fluorescence detection was modified for sensitive detection of 4 tetracyclines (TCs) in biological samples and feeds. The changes in injection mode, injection times, id of capillary, excitation wavelength, and the use of surfactant and sample stacking technique all contributed to improved LODs of TCs to sub-ng/mL level. With the optimized conditions, the instrumental LODs could reach 1.33 ng/mL for chlorotetracycline (CTC) and 13.3 ng/mL for TC, oxytetracycline (OTC), and doxycycline (DC), an improvement of 10-100-fold over past studies. A simple SPE procedure was further developed for the extraction and concentration of TCs in plasma, urine, feed, and milk. Taken together, the instrumental LOD and feasible SPE concentration factors the overall LODs for CTC could reach 65 pg/mL in feed and milk and 260 pg/mL in plasma and urine. Detection limits for TC, OTC, and DC at sub-ng/mL level were also achieved. The modified CE-LIF method was found to be less complicated and more sensitive than the best current methods using UV or LIF detection, and has been applied successfully to assess oral absorption of DC in swine and chickens and to confirm suspected TC-positive bovine serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号