首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   

2.
We report a versatile platform for highly sensitive alkaline phosphatase (ALP)‐based electrochemical biosensors that uses an avidin‐modified indium tin oxide (ITO) electrode as a sensing electrode and 1‐naphthyl phosphate (NPP) as an ALP substrate. Almost no electrocatalytic activity of NPP and good electrocatalytic activity of 1‐naphthol (ALP product) on the ITO electrodes allow a high signal‐to‐background ratio. The effective surface covering of avidin on the ITO electrodes allows very low levels of nonspecific binding of proteins to the sensing electrodes. The platform technology is used to detect mouse IgG with a detection limit of 1.0 pg/mL.  相似文献   

3.
N‐Nnitrosodiphenylamine (NDPhA) is a typical kind of nonvolatile nitrosamine. Its electrochemical oxidation occurs usually at relative positive potentials (>1.1 V) even at catalytic noble metal electrodes in aqueous solutions. The formation of oxide and evolution of oxygen at such high potentials makes the analysis of NDPhA on noble metal electrodes difficult. Accordingly, its electrochemical analysis is usually performed in anhydrous organic electrolytes. In this work, room temperature ionic liquid [BMIM+] [BF ] acting as electrolyte was introduced in this electrochemical analysis systems. It acts as supporting electrolyte itself, has good solubility of organic compounds, and allows a wide performance potential window of noble electrode, and in turn, highly electrocatalytic noble electrode of platinum or gold can be used as working electrodes. After the investigation of the electrocatalytic behavior of NDPhA at a gold electrode in this room temperature ionic liquid electrolyte, high sensitive determination of NDPhA was designed. It is demonstrated that the electrochemical response of NDPhA is determined by a surface‐controlled process. Therefore, a sensor with high sensitivity was constructed by applying porous Au electrodes with highly electrocatalytic activity and large active surface area. The present approach on one hand broadens the application field of room temperature ionic liquids, and on the other hand provides a sensitive analytical method for environmental detection.  相似文献   

4.
We report the direct electrochemistry of cytochrome c at screen printed graphite electrodes which exhibits quasi-reversible voltammetric responses without the need for any chemical or electrochemical pre-treatment, use of mediators or nanomaterials. Through voltammetric studies and X-ray photoelectron spectroscopy (XPS) it is shown that carbonyl and carboxylic surface oxygenated species likely residing at edge plane like- sites/defects of the graphite comprising the screen printed electrodes are responsible for the favourable interaction of the cytochrome c with that of the screen printed electrochemical sensing platform.  相似文献   

5.
The electrochemical sensing is a potential method for detection of trace toxic substance. Herein, the heterojunction of netlike ZnO/BiOCl nanosheets was constructed for the enhanced electrochemical detection of ammonia. Cyclic voltammetry and linear sweep voltammetry were used to investigate the electrochemical performance. The results show that the ZnO/BiOCl-modified electrode exhibits higher sensitivity towards ammonia compared with the ZnO and BiOCl-based electrodes, which is ascribed to band structure and fast electron transfer. The high response of 11.8 μA mM−1 and a low detection limit (LOD) of 0.25 μM are achieved. In addition, the ZnO/BiOCl material exhibits high selectivity, repeatability and stability. The better linear relationship between concentration and current (R2=0.99) is significant for quantitative detection of ammonia, implying that netlike ZnO/BiOCl nanosheets can serve as electrochemical sensing platform for detecting toxic substance. This research provides a strategy for fabricating two-dimensional netlike materials and regulating heterojunctions used for electrochemical application.  相似文献   

6.
The success of a voltammetric sensing procedure depends mainly on the proper choice of the working electrode. This is because its ability to accumulate the analyte determines the sensitivity of the method. The main criterion of the selection of the proper working electrode is the available potential window. A variety of conductive materials have been used for the preparation of working electrodes. Of these, two kinds of mercury electrodes—hanging mercury drop and film—were used because of their excellent voltammetric performance and, in particular, their high overpotential of hydrogen reduction. The significant drawbacks of mercury electrodes, however, are the toxicity of the material and the instability of liquid mercury films. To overcome these disadvantages, less toxic mercury-containing materials have been used, such as amalgams and amalgam film electrodes. This group includes renewable silver amalgam film electrodes used for electrochemical stripping sensing purposes. These electrodes have successfully been applied for anodic, adsorptive, cathodic, catalytic voltammetric, and potentiometric stripping determination of trace amounts of inorganic cations and organic compounds in various natural matrices. In this review, the electrode design, characteristics, and application of two kinds of renewable silver amalgam film electrodes are discussed in detail.  相似文献   

7.
We demonstrate that metallic free carbon nanotube cluster modified screen printed electrodes provide an advantageous sensing methodology for nicotine. The electrochemical oxidation of nicotine is possible at low potentials compared to other commercially available carbon electrodes. Using the carbon nanotube cluster modified screen printed electrodes a detection range of 10 to 1000 μM is possible with a limit of detection of 2 μM. The sensing protocol is shown to be viable in artificial saliva and is promising as a portable and rapid sensor for nicotine in oral fluid (saliva) in areas such as health/life insurance, instances where smoking is banned and also as a point of care test to help improve smoking quit rates.  相似文献   

8.
The electrocatalytic properties of boron-doped diamond (BDD) electrodes have been considered for a variety of sensing applications. The unusual electrochemical properties of BDD include a large potential window, a small background current, and better resistance to fouling than other carbon-based electrodes. The use of BDD for remediation and environmental sensing applications has recently attracted the interest of the sensor research community. This review focuses on recent developments that involve the use of BDD as an environmentally friendly sensing material for environmental analysis. The electrochemical properties of boron-doped diamond that has undergone surface modification (e.g., with metals or enzymes) will be considered. Recent achievements involving the use of BDD electrodes for detecting pesticides, mycotoxins, peroxides, and phenolic compounds are considered.  相似文献   

9.
Although many electrochemical gas sensors have been reported, electrochemical gas sensors based on liquid collection constitute a smaller subset. Minimally, a liquid interface based electrochemical gas sensor is composed of two electrodes and an ion conducting electrolyte. There is a large number of possible arrangements of these parts, and many choices exist for their composition and preparation methods. This results in a diverse and rich technology now available for gas sensing. The measurement of some analyte gases of interest, notably ozone, nitrogen oxides, hydrogen peroxide, formaldehyde, ammonia, sulfur dioxide and hydrogen sulfide are specifically discussed. Finally, the recent reviews that are likely to be the most relevant to the further development of electrochemical detection approaches for gases with a liquid collection interface are cited and discussed.  相似文献   

10.
To build a portable and sensitive method for monitoring the concentration of the flavonoid rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conventional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively. The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in detail, with the analytical performances investigated. Due to the electroactive groups of rutin, and the specific π-π stacking and cation–π interaction between the nanocomposite with rutin, the electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L−1 to 220.0 μmol L−1 and the detection limit of 0.33 nmol L−1 (S/N = 3). Finally, two kinds of sensors were applied to test the real samples with satisfactory results.  相似文献   

11.
用紫外-可见光谱(UV-Vis)研究了Ti/PbO2和Ti/Ru-Ti-Sn三元氧化物涂层电极对苯酚的电化学氧化及其中间产物的影响,通过高效液相色谱(HPLC)方法检测了苯二酚的生成,结果表明,苯酚的电化学氧化和降解是羟基化产物对苯二酚和邻苯二酚进一步氧化的结果。  相似文献   

12.
《Electroanalysis》2017,29(9):2125-2137
In this study, modified electrodes were constructed with the electropolymerization of metallophthalocyanines (MPcs) carrying redox active metal cations and electropolymerizable substituents. Then these electrodes were tested as selective and sensitive electrochemical pesticide sensors. Incorporation of the redox active Co(II) (CoPc(MOR‐NAF)), Cl–Mn(III) (MnPc(MOR‐NAF)), and Ti(IV)O (TiOPc(MOR‐NAF)) metal cations into Pc cavity increased the redox activity of Pc ring. Moreover, redox active and electropolymerizable 5‐{[(1E)‐(4‐morpholin‐4‐ylphenyl)methylene]amino}‐1‐naphthoxy substituents (MOR‐NAF) on the Pc ring triggered coating of the complexes on the electrode surface with the electropolymerization reactions. Therefore, modified electrodes GCE/MPc(MOR‐NAF) were constructed with the electropolymerizations of MPcs. These electrodes illustrated reasonable redox activity and conductivity for the potential applications in different fields of the electrochemical technologies. Pesticide sensing measurements indicated that changing the metal center of the complexes significantly altered their sensing activities. Among the complexes, GCE/CoPc(MOR‐NAF) electrode behaved as the most sensitive and selective electrode and it sensed the parathion with good selectivity and sensitivity. GCE/CoPc(MOR‐NAF) electrode showed a wider linear range (0.075‐5.75 μmoldm−3) and smaller LOD (0.025 μmoldm−3) and higher sensitivity (3.46 Acm−2M−1) for the parathion sensing. Although GCE/TiOPc(MOR‐NAF) electrode also sensed the parathion with a high sensitivity, its selectivity was poor and the linear range of this sensing was very narrow. Differently GCE/Cl–MnPc(MOR‐NAF) electrode only sensed eserine with reasonably sensitivity.  相似文献   

13.
Electrochemical sensing technology has received extensive attention from researchers for its unique detection and analysis methods as well as the promising applications in clinical diagnosis. Compared with other detection methods, such as capillary electrophoresis, high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry, the electrochemical sensor overcomes the disadvantages of expensive cost and complicated operation, as an ideal device for in vitro detection. In this article, we mainly introduce some methods for the detection of biologically important compounds and cancer biomarkers, and briefly summarize the characteristics of these methods at first. And then, we also focus on the latest research progress in the application of electrochemical sensing technology to biologically important compounds' and cancer biomarkers' detection. Finally, the development trend and challenges of electrochemical sensing technology for in vitro diagnosis are also prospected.  相似文献   

14.
The monitoring of heparin and its derivatives in blood samples is important for the safe usage of these anticoagulants and antithrombotics in many medical procedures. Such an analytical task is, however, highly challenging due to their low therapeutic levels in the complex blood matrix, and it still relies on classical, indirect, clot-based assays. Here we review recent progress in the direct electrochemical sensing of heparin and its analogs at liquid/liquid interfaces and polymeric membranes. This progress has been made by utilizing the principle of electrochemical ion transfer at the interface between two immiscible electrolyte solutions (ITIES) to voltammetrically drive the interfacial transfer of polyanionic heparin and monitoring the resulting ionic current as a direct measure of heparin concentration. The sensitivity, selectivity, and reproducibility of the ion-transfer voltammetry of heparin are dramatically enhanced compared to those of traditional potentiometry. This voltammetric principle was successfully applied for the detection of heparin in undiluted blood samples, and was used to develop highly sensitive ion-selective electrodes based on thin polymeric membranes that are intended for analytical applications beyond heparin detection. The mechanism of heparin recognition and transfer at liquid/liquid interfaces was assessed quantitatively via sophisticated micropipet techniques, which aided the development of a powerful ionophore that can extract large heparin molecules into nonpolar organic media. Moreover, the reversible potentiometric detection of a lethal heparin-like contaminant in commercial heparin preparations was achieved through the use of a PVC membrane doped with methyltridodecylammonium chloride, which enables charge density dependent polyanion selectivity.  相似文献   

15.
We describe the fabrication and performance of an integrated microelectrochemical reactor-a design possessing utility for multiple applications that include electrochemical sensing, the generation and manipulation of in-channel microfluidic pH gradients, and fluid actuation and flow. The device architecture is based on a three-electrode electrochemical cell design that incorporates a Pt interdigitated array (IDA) working (WE), a Pt counter (CE), and Ag pseudo-reference (RE) electrodes within a microfluidic network in which the WE is fully immersed in a liquid electrolyte confined in the channels. The microchannels are made from a conventional poly(dimethylsiloxane)(PDMS) elastomer, which serves also as a thin gas-permeable membrane through which gaseous reactants in the external ambient environment are supplied to the working electrode by diffusion. Due to the high permeability of oxygen through PDMS, the microfluidic cell supports significantly (>order of magnitude) higher current densities in the oxygen reduction reaction (ORR) than those measured in conventional (quiescent) electrochemical cells for the same electrode areas. We demonstrate in this work that, when operated at constant potential under mass transport control, the device can be utilized as a membrane-covered oxygen sensor, the response of which can be tuned by varying the thickness of the PDMS membrane. Depending on the experimental conditions under which the electrochemical ORR is performed, the data establish that the device can be operated as both a programmable pH gradient generator and a microfluidic pump.  相似文献   

16.
《Electroanalysis》2005,17(1):7-14
This review addresses recent advances in carbon‐nanotubes (CNT) based electrochemical biosensors. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices, in general, and electrochemical biosensors, in particular. CNT‐based electrochemical transducers offer substantial improvements in the performance of amperometric enzyme electrodes, immunosensors and nucleic‐acid sensing devices. The greatly enhanced electrochemical reactivity of hydrogen peroxide and NADH at CNT‐modified electrodes makes these nanomaterials extremely attractive for numerous oxidase‐ and dehydrogenase‐based amperometric biosensors. Aligned CNT “forests” can act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centers of enzymes. Bioaffinity devices utilizing enzyme tags can greatly benefit from the enhanced response of the biocatalytic‐reaction product at the CNT transducer and from CNT amplification platforms carrying multiple tags. Common designs of CNT‐based biosensors are discussed, along with practical examples of such devices. The successful realization of CNT‐based biosensors requires proper control of their chemical and physical properties, as well as their functionalization and surface immobilization.  相似文献   

17.
In this study, SnO2 nanoparticles (SNPs)-poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were developed for electrochemical monitoring of DNA hybridization. The surfaces of polymer modified and polymer-SNP modified pencil graphite electrodes (PGEs) were firstly characterized by using SEM analysis. The electrochemical behaviours of these electrodes were also investigated using the differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The polymer-SNP modified PGEs were then tested for the electrochemical sensing of DNA based on the changes at the guanine oxidation signals. Experimental parameters, such as; different modifications in DNA oligonucleotides, DNA probe concentrations were examined to obtain more sensitive and selective electrochemical signals for nucleic acid hybridization. After optimization studies, DNA hybridization was investigated in the case of complementary of hepatitis B virus (HBV) probe, mismatch (MM), and noncomplementary (NC) sequences.  相似文献   

18.
This work presents a novel disposable electrochemical sensor for paracetamol (PCM). The sensing platform is based on graphene, manufactured via laser-scribing technology (LSG) to produce a 3D-porous structure that offers a large surface area. The analytical performances of LSG electrodes were greatly enhanced due to the high catalytic activity of graphene produced by LSG technology compared to conventional carbon electrodes. Moreover, the results showed an outstanding adsorption feature towards PCM, allowing its detection at nanomolar level from 5 nM to 100 nM through pre-concentration. The proposed sensing strategy was successfully applied for the determination of PCM in human urine samples.  相似文献   

19.
This publication shows a single-step electropolymerization which has been carried out by the incorporation of an anionic stacked graphene nanofiber (SGNF) dopant into a polypyrrole (PPy) film, at a disposable screen-printed electrode. The incorporation of the SGNFs into the polymer does not affect their electrochemical properties, shown through cyclic voltammetry by the earlier oxidation of guanine, when compared with that at the graphite doped PPy electrode. The SGNF/PPy composite shows a high selectivity when used in the oxidation of guanine and hydrogen peroxide, both of which are important biomarkers used for biosensing. Disposable screen-printed electrodes provide an inexpensive, sensitive and portable substitute to glassy carbon electrodes, while giving a reproducible surface; qualities essential for effective bionsensing. The production of this single-step disposable SGNF/PPy composite electrode allows for further applications in the detection of biomedically important compounds and DNA sensing.  相似文献   

20.
Organophosphorus hydrolase (OPH) immobilized on CNT/ionic liquid (IL) electrodes were prepared by using three different intrinsic kinds of ILs, as binders. CNTs/ILs lead to dramatic electrochemical enhancements with respect to response time, stability, and sensitivity of composite electrodes. In addition, the electrochemical and biocatalytic properties of three-composite electrodes were strongly influenced by different types of ILs used, as verified by cyclic voltammetry and chronoamperometry. These results were attributed to the conformational changes of the microenvironment between the OPH and the composite electrodes within three different types of ILs. In particular, the biocatalytic signals of three OPH/CNT/ILs-modified electrodes increased linearly to the concentration of paraoxon in a wide range of 2–20 μM. These findings provide a deep understanding of the role of each IL on the modified electrodes, enabling to enhance electrochemical properties for biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号