首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Stereoselective approach for preparation ofα-difluoromethylα-propargylamines has been developed.1,2-Addition of lithium acetylides to diverse chiral difluoromethylated(S)-N-tert-butanesulfinyl ketimines by using Ti(OiPr)4 as catalyst and THF as solvent afforded N-tert-butanesulfinamides in good to excellent yields(51-93%) and good diastereoselectivities(dr.85:15 to 93:7).The N-tert -butanesulfinyl group can be readily cleaved under mild acidic condition(4 mol/L HCl in dioxane) to provide the correspondingα-difiuoromethylα-propargylamine in excellent yields(90-95%).  相似文献   

2.
A new method for the synthesis of aminovinyl trifluoromethyl ketones was developed. The method is based on the reactions of 4-sulfonyl-1,1,1-trifluorobut-3-ene-2,2-diols with various alkyl-, aryl-, dialkyl-, and alkylarylamines. The stereochemistry of the compounds obtained was studied.  相似文献   

3.
The reactions of vinyl sulfides with -sulfonylvinyl trifluoromethyl ketones afforded CF3-containing 3,4-dihydro-2H-pyrans. An attempt to synthesize 1,1,1-trifluoro-3-(methylthio)but-3-en-2-one resulted in its dimerization into a CF3-containing 3,4-dihydro-2H-pyran.  相似文献   

4.

Abstract  

A facile stereoselective synthesis of 1,2-dihydroquinolin-2-ylphosphonate and 1,2-dihydroisoquinolin-1-ylphosphonate derivatives by the three-component reactions of quinoline or isoquinoline, dialkyl acetylenedicarboxylates, and hydrogen phosphonates is described.  相似文献   

5.
A one-step heterocyclization of o-nitrobenzylamines to 3-alkoxy-2H-indazoles is reported. The electronic nature of the nitrophenyl group, the steric and electronic nature of the R1-functionalized benzylic amine, and the nature of the alcoholic solvent affect the efficiency of this heterocyclization reaction (approximately 40-90%).  相似文献   

6.
7.
8.
Here we reported a novel and efficient method for the synthesis of the critical intermediates of branched fluorinated surfactants with CF3CF2CF2C (CF3)2- group using HFPD as starting material. The reaction conditions were mild and easy to handle, which was promisingly applied to the industrial production.  相似文献   

9.
The rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2 have been measured over the temperature range 250–430 K. Kinetic measurements have been carried out using the flash photolysis, laser photolysis, and discharge flow methods combined respectively with the laser induced fluorescence technique. The influence of impurities in the samples was investigated by using gas‐chromatography. The following Arrhenius expressions were determined: k(CH3OCF2CF3) = (1.90) × 10−12 exp[−(1510 ± 120)/T], k(CH3OCF2CF2CF3) = (2.06) × 10−12 exp[−(1540 ± 80)/T], and k(CH3OCF(CF3)2) = (1.94) × 10−12 exp[−(1450 ± 70)/T] cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 846–853, 1999  相似文献   

10.
The CO_2 laser induced room temperature reactions of CH_3CF_2H or another protium-donorCH_3CHClCH_3 with chlorine-atom donors (Z--Cl) CFCl_2CF_2Cl, CF_3CCl_3, CFCl_3 or CF_2Cl_2, havebeen investigated. Some of these reactions can yield two important monomers (CF_2=CH_2 andCF_2=CFCl) for fluoropolymers simultaneously. The yield dependence of these two alkenes on experi-mental conditions has been studied. A laser-initiated chain process is supported by identifica-tion of Z--H intermediates in these reactions.  相似文献   

11.
The use of hydrogen-rich CF4 plasmas leads to the selective etching of SiO2 in the presence of Si. The mechanisms which control this selectivity are poorly understood, and much more needs to be known about the fundamental chemical processes. In this work the reactions $$\begin{gathered} CF_3 + H \to CF_2 + HF \hfill \\ CF_2 + H \to CF + HF \hfill \\ \end{gathered} $$ have been studied at 295 K using a gas-flow reactor sampled by a mass spectrometer. The rate coefficients obtained are (8.9±1.8)×10?11 cm3 s?1 and (1.65±0.40)×10?13 cm3 s?1 for reactions (3) and (4) respectively. These values establish reaction (3) as a major source of CF2 while reaction (4) would be expected to be only a minor loss process in the etching environment.  相似文献   

12.
<正>Fluorinated organic compounds display significant impact in the fields of agrochemicals,pharmaceuticals and materials science.However,very few fluorine-containing compounds are available from nature,and therefore studies of the distinct effect of fluorine substitution mainly depend on the ease of access to fluorinated scaffolds.Among fluorination strate-  相似文献   

13.
Chemically activated CF2ClCHFCH3 and CF2ClCHFCD3 molecules were prepared with 94 kcal mol-1 of vibrational energy by the recombination of CF2ClCHF and CH3(CD3) radicals at room temperature. The unimolecular reaction pathways were 2,3-FH(FD) elimination, 1,2-ClF interchange and 1,2-ClH elimination; the interchange produces CF3CHClCH3(CF3CHClCD3) with 105 kcal mol-1 of vibrational energy. Rate constants for CF2ClCHFCH3 [CF2ClCHFCD3] were (3.1+/-0.4)x10(6) s-1 [(1.0+/-0.1)x10(6) s-1] for 2,3-FH [FD] loss, (1.5+/-0.2)x10(6) s-1 [(8.3+/-0.9)x10(5) s-1] for 1,2-ClF interchange, and (8.2+/-1.0)x10(5) s-1 [(5.3+/-0.6)x10(5) s-1] for 1,2-ClH [DCl] loss. These correspond to branching fractions of 0.55+/-0.06 [0.43+/-0.04] for 2,3-FH [FD] loss, 0.29+/-0.03 [0.35+/-0.04] for 1,2-ClF interchange, and 0.16+/-0.02 [0.22+/-0.02] for 1,2-ClH [ClD] loss. Kinetic-isotope effects were 3.0+/-0.6 for 2,3-FH [FD] loss, 1.6+/-0.3 for 1,2-ClH loss, and 1.8+/-0.4 for 1,2-ClF interchange. The CF3CHClCH3 (CF3CHClCD3) molecules formed by 1,2-FCl interchange react by loss of HCl [DCl] with rate constants of (5.6+/-0.9)x10(7) s-1 [(2.1+/-0.4)x10(7)] s-1 for an isotope effect of 2.7+/-0.4. Density functional theory was employed to calculate vibrational frequencies and moments of inertia for the molecules and for the transition-state structures. These results were used with RRKM theory to assign threshold energies from comparison of computed and experimental unimolecular rate constants. The threshold energy for ClF interchange is 57.5 kcal mol-1, and those for HF and HCl channels are 2-5 kcal mol-1 higher. Experiments with vibrationally excited CF2ClCF2CF3, CF2ClCF2CF2Cl, and CF2ClCF2Cl, which did not show evidence for ClF interchange, also are reported.  相似文献   

14.
The reaction kinetics of chlorine atoms with a series of partially fluorinated straight-chain alcohols, CF(3)CH(2)CH(2)OH (1), CF(3)CF(2)CH(2)OH (2), CHF(2)CF(2)CH(2)OH (3), and CF(3)CHFCF(2)CH(2)OH (4), were studied in the gas phase over the temperature range of 273-363 K by using very low-pressure reactor mass spectrometry. The absolute rate coefficients were given by the expressions (in cm(3) molecule(-1) s(-1)): k(1) = (4.42 +/- 0.48) x 10(-11) exp(-255 +/- 20/T); k(1)(303) = (1.90 +/- 0.17) x 10(-11), k(2) = (2.23 +/- 0.31) x 10(-11) exp(-1065 +/- 106/ T); k(2)(303) = (6.78 +/- 0.63) x 10(-13), k(3) = (8.51 +/- 0.62) x 10(-12) exp(-681 +/- 72/T); k(3)(303) = (9.00 +/- 0.82) x 10(-13) and k(4) = (6.18 +/- 0.84) x 10(-12) exp(-736 +/- 42/T); k(4)(303) = (5.36 +/- 0.51) x 10(-13). The quoted 2sigma uncertainties include the systematic errors. All title reactions proceed via a hydrogen atom metathesis mechanism leading to HCl. Moreover, the oxidation of the primarily produced radicals was investigated, and the end products were the corresponding aldehydes (R(F)-CHO; R(F) = -CH(2)CF(3), -CF(2)CF(3), -CF(2)CHF(2), and -CF(2)CHFCF(3)), providing a strong experimental indication that the primary reactions proceed mainly via the abstraction of a methylenic hydrogen adjacent to a hydroxyl group. Finally, the bond strengths and ionization potentials for the title compounds were determined by density functional theory calculations, which also suggest that the alpha-methylenic hydrogen is mainly under abstraction by Cl atoms. The correlation of room-temperature rate coefficients with ionization potentials for a set of 27 molecules, comprising fluorinated C2-C5 ethers and C2-C4 alcohols, is good with an average deviation of a factor of 2, and is given by the expression log(k) (in cm(3) molecule(-1) s(-1)) = (5.8 +/- 1.4) - (1.56 +/- 0.13) x (ionization potential (in eV)).  相似文献   

15.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The following reactions: (1) were studied over the temperature ranges 533–687 K, 563–663 K, and 503–613 K for the forward reactions respectively and over 683–763 K, for the back reaction. Arrhenius parameters for chlorine atom transfer were determined relative to the combination of the attacking radicals. The ΔHr°(1) = ?3.95 ± 0.45 kcal mol?1 was calculated and from this value the ΔH∮(C2F5Cl) = ?2.66.3 ± 2.5 kcal mol?1 and D(C2F5-Cl) = 82.0 ± 1.2 kcal mol?1 were obtained. Besides, the ΔHr°(2) was estimated leading to D(CF2ClCF2Cl) = 79.2 ± 5 Kcal mol?1. The bond dissociation energies and the heat of formation are compared with those of the literature. The effect of the halogen substitutents as well as the importance of the polar effects for halogen transfer processes are discussed.  相似文献   

17.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

18.
The gas phase photolysis of CF3CCl3 in the presence of several alkanes has been used to obtain Arrhenius parameters for the abstraction of hydrogen atoms by the CF3CCl2 radical: Activation energies of 9.6 and 8.0 kcal/mole are found for abstraction from secondary and tertiary C–H bonds, respectively. The Arrhenius parameters are compared to those for CCl3 and CF3 radicals.  相似文献   

19.
20.
Vibrationally excited CF2BrCF2CH3 and CF2BrCF2CD3 molecules were prepared with 96 kcal mol-1 energy at room temperature by the recombination of CF2BrCF2 and CH3 (CD3) radicals. The observed unimolecular reactions are 1,2-BrF interchange to give CF3CFBrCH3 (CD3) molecules and 2,3-FH (FD) elimination; the rate constants are 2.2 x 10(5) (1.5 x 10(5)) s(-1) and 2.0 x 105 (0.75 x 10(5)) s(-1), respectively. The CF3CFBrCH3 (CD3) molecules rapidly, relative to the reverse reaction, eliminate HBr or DBr to give the observed product CF3CF=CH2 (CD2). Density functional theory at the B3PW91/6-311+G(2d,p) level was used to obtain vibrational frequencies and moments of inertia of the molecule and transition states for subsequent calculations of statistical rate constants for CF2BrCF2CH3 and CF2BrCF2CD3. Matching experimental and calculated rate constants gave threshold energies of 62 and 66 kcal mol-1 for 1,2-BrF interchange and 2,3-FH elimination, respectively. The BrF interchange reaction is compared to ClF interchange from CF2ClCF2CH3 and CF2ClCHFCH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号