首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes van der Pol damping, is very complex. In this paper, Melnikov'smethod is used to study the heteroclinic orbit bifurcations, subharmonic bifurcations and chaos in this system. Smale horseshoes and chaotic motions can occur from odd subharmonic bifurcation of infinite order in this system for various resonant cases.Finally the numerical computing method is used to study chaotic motions of this system. The results achieved reveal some new phenomena.  相似文献   

2.
基于最优参数控制方法,实现了齿轮传动系统中的混沌控制.以经典的间隙单齿轮副非线性动力学模型为研究对象,以啮合静载荷为控制参数,通过混沌吸引子中轨线的观测近似得到目标周期不动点、系统在目标不动点处的雅克比矩阵以及在控制原始参量处的梯度矩阵.最后运用最优参数控制策略计算得到啮合静载荷的小扰动量,实现了把齿轮系统的混沌运动镇定周期一轨道上的目的.研究结果表明,基于最优参数控制方法的控制过程,只是在控制的前几个周期内需要控制参数产生相对较大的扰动量,随着控制的继续进行,扰动量几乎稳定到了某一固定值,不再需要较大的变动.而且控制参数计算所需要的中间参量可以直接由混沌吸引子中轨线的观测近似得到,因而控制容易实现.  相似文献   

3.
In this paper, we introduce a new chaotic complex nonlinear system and study its dynamical properties including invariance, dissipativity, equilibria and their stability, Lyapunov exponents, chaotic behavior, chaotic attractors, as well as necessary conditions for this system to generate chaos. Our system displays 2 and 4-scroll chaotic attractors for certain values of its parameters. Chaos synchronization of these attractors is studied via active control and explicit expressions are derived for the control functions which are used to achieve chaos synchronization. These expressions are tested numerically and excellent agreement is found. A Lyapunov function is derived to prove that the error system is asymptotically stable.  相似文献   

4.
In this effort, a six-degree-of-freedom (DOF) model is presented for the study of a machine-tool spindle-bearing system. The dynamics of machine-tool spindle system supported by ball bearings can be described by a set of second order nonlinear differential equations with piecewise stiffness and damping due to the bearing clearance. To investigate the effect of bearing clearance, bifurcations and routes to chaos of this nonsmooth system, numerical simulation is carried out. Numerical results show when the inner race touches the bearing ball with a low speed, grazing bifurcation occurs. The solutions of this system evolve from quasi-periodic to chaotic orbit, from period doubled orbit to periodic orbit, and from periodic orbit to quasi-periodic orbit through grazing bifurcations. In addition, the tori doubling process to chaos which usually occurs in the impact system is also observed in this spindle-bearing system.  相似文献   

5.
The chaotic dynamics of a single-degree-of-freedom nonlinear mechanical system under periodic parametric excitation is investigated. Besides the well known type-I and type-III intermittent transitions to chaos we give numerical evidence that the system can follow an alternative route to chaos via intermittency from an equilibrium state to a chaotic one, which was not found in the previous simulations of the dynamics of the system.  相似文献   

6.
In this paper we investigate the bifurcations and the chaos of a piecewise linear discontinuous (PWLD) system based upon a rig-coupled SD oscillator, which can be smooth or discontinuous (SD) depending on the value of a system parameter, proposed in [18], showing the equilibrium bifurcations and the transitions between single, double and triple well dynamics for smooth regions. All solutions of the perturbed PWLD system, including equilibria, periodic orbits and homoclinic-like and heteroclinic-like orbits, are obtained and also the chaotic solutions are given analytically for this system. This allows us to employ the Melnikov method to detect the chaotic criterion analytically from the breaking of the homoclinic-like and heteroclinic-like orbits in the presence of viscous damping and an external harmonic driving force. The results presented here in this paper show the complicated dynamics for PWLD system of the subharmonic solutions, chaotic solutions and the coexistence of multiple solutions for the single well system, double well system and the triple well dynamics.  相似文献   

7.
The dynamics behavior of a nonlinear visco-elastic rod subjected to axially periodic load is investigated theoretically and numerically. The weak longitudinal periodic load is distributed uniformly along the rod. Firstly, equation of motion of the rod is derived. Utilizing perturbation technique, we acquire Kdv type equation describing strain wave in the rod. By use traveling wave method, the elliptic cosine wave solution and the solitary wave solution in the rod are provided. Then, Melnikov method is applied to analyze the dynamic behaviour of the rod qualitatively. The explicit conditions for the onset of chaotic dynamics are yielded. With the help of the Poincare map method, phase trajectory and time-displacement history diagrams, the theoretical results obtained are checked.  相似文献   

8.
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s third-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial difirential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.  相似文献   

9.
The bifurcation and chaos of a clamped circular functionally graded plate is investigated. Considered the geometrically nonlinear relations and the temperature-dependent properties of the materials, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic excitation and thermal load are derived. The Duffing nonlinear forced vibration equation is deduced by using Galerkin method and a multiscale method is used to obtain the bifurcation equation. According to singularity theory, the universal unfolding problem of the bifurcation equation is studied and the bifurcation diagrams are plotted under some conditions for unfolding parameters. Numerical simulation of the dynamic bifurcations of the FGM plate is carried out. The influence of the period doubling bifurcation and chaotic motion with the change of an external excitation are discussed.  相似文献   

10.
Non-dimensional mathematical model of brushless DC motor (BLDCM) system is presented here. BLDCM is known to produce chaotic phenomenon under certain conditions. This paper fuses dynamic surface control, radial basis function neural network, and adaptive technology to control the BLDCM, which overcomes the repetitive differentiation of the nonlinear terms of backstepping and the boundedness hypothesis of control gain pre-determined. The tangent barrier Lyapunov function is also used for time-delay nonlinear system with parametric uncertainties. Simulation results under different conditions indicate that the proposed method works well to suppress chaos and effects of parameter variation.  相似文献   

11.
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.  相似文献   

12.
针对陶瓷-金属功能梯度圆板,同时考虑几何非线性、材料物性参数随温度变化且材料组分沿厚度方向按幂律分布的情况,应用虚功原理给出了热载荷与横向简谐载荷共同作用下的非线性振动偏微分方程。在固支无滑动的边界条件下,通过引入位移函数,利用伽辽金方法得到了达芬型非线性动力学方程。利用Melnikov方法,给出了热环境中功能梯度圆板可能发生混沌运动的临界条件。通过数值算例,给出了不同体积分数指数和温度的同宿分岔曲线,平面相图和庞加莱映射图,讨论其对临界条件的影响,证实了系统混沌运动的存在。通过分岔图和与其相对应的最大李雅普诺夫指数图,分析了激励频率和激励幅值对倍周期分岔的影响及变化规律,发现系统可出现周期、倍周期和混沌等复杂动力学响应。  相似文献   

13.
Anomalous dynamics response of nonlinear elastic bar   总被引:1,自引:0,他引:1  
IntroductionInresentyears,thechaoticbehaviorofbeamssubjectedtoperiodicloadbringsmoreandmorescholars’interests.In 1 983 ,FCMoonetal.[1]studiedthechaoticmotionsofbeamsinnonlinearboundaryconditions.In 1 994 ,S .AnanthaRamuandTSSankaretal.[2 ]analyzedbifurcationandCata…  相似文献   

14.
We derive a water wheel model from first principles under the assumption of an asymmetric water wheel for which the water inflow rate is in general unsteady (modeled by an arbitrary function of time). Our model allows one to recover the asymmetric water wheel with steady flow rate, as well as the symmetric water wheel, as special cases. Under physically reasonable assumptions, we then reduce the underlying model into a non-autonomous nonlinear system. In order to determine parameter regimes giving chaotic dynamics in this non-autonomous nonlinear system, we consider an application of competitive modes analysis. In order to apply this method to a non-autonomous system, we are required to generalize the competitive modes analysis so that it is applicable to non-autonomous systems. The non-autonomous nonlinear water wheel model is shown to satisfy competitive modes conditions for chaos in certain parameter regimes, and we employ the obtained parameter regimes to construct the chaotic attractors. As anticipated, the asymmetric unsteady water wheel exhibits more disorder than does the asymmetric steady water wheel, which in turn is less regular than the symmetric steady state water wheel. Our results suggest that chaos should be fairly ubiquitous in the asymmetric water wheel model with unsteady inflow of water.  相似文献   

15.
The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kova?i? and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.  相似文献   

16.
The study of chaos has generated enormous interest in exploring the complexity of the behavior in nature and in technology. Many of the important features of chaotic dynamical systems can be seen using experimental and computational methods in simple nonlinear mechanical systems or electronic circuits. Starting with the study of a chaotic nonlinear mechanical system (driven damped pendulum) or a nonlinear electronic system (circuit Chua) we introduce the reader into the concepts of chaos order in Sharkovsky's sense, and topological invariants (topological entropy and topological frequencies). The Kirchhoff's circuit laws are a pair of laws that deal with the conservation of charge and energy in electric circuits, and the algebraic theory of graphs characterizes these linear systems in terms of cycles and cocycles (or cuts). Here we discuss methods (topological semiconjugacy to piecewise linear maps and Markov graphs) to find a similar situation for the nonlinear dynamics, to understanding chaotic dynamics. Thus to chaotic dynamics we associate a Markov graph, where the dynamical and topological invariants will be seen as graph theoretical quantities.  相似文献   

17.
The gearboxes of machines generally operate under a time-varying state rather than under steady-state conditions. However, it is difficult to investigate the nonlinear dynamics of a time-varying gear system. A gear system model of a railway vehicle was proposed in consideration of its time-varying mesh stiffness, nonlinear backlash, transmission error, time-varying external excitation, and rail irregularity. To obtain the nonlinear behaviors of a time-varying stochastic gear system, a quasi-static analysis was performed to observe its doubling-periodic bifurcation, chaotic motion, and transition from a lower to a higher power periodic motion. Based on the energy comparison results, the time-varying stochastic gear system was degraded to a time-varying system to simplify the calculation. Furthermore, the nonlinear response of the time-varying system was computed using the Runge–Kutta method and was compared with the results of a quasi-static analysis that employed a short-time Fourier transform method. The results of the quasi-static analysis were consistent with the results of the time–frequency analysis for the time-varying gear system except for the result at 3180 r/min, which represented a short period wherein the process transitioned to chaos. Hence, the comparison demonstrates the applicability of the quasi-static analysis for the nonlinear behavior analysis of a time-varying stochastic system.  相似文献   

18.
周碧柳  靳艳飞 《力学学报》2022,54(7):2030-2040
耦合SD振子作为一种典型的负刚度振子, 在工程设计中有广泛应用. 同时高斯色噪声广泛存在于外界环境中, 并可能诱发系统产生复杂的非线性动力学行为, 因此其随机动力学是非线性动力学研究的热点和难点问题. 本文研究了高斯色噪声和谐波激励共同作用下双稳态耦合SD振子的混沌动力学, 由于耦合SD振子的刚度项为超越函数形式, 无法直接给出系统同宿轨道的解析表达式, 给混沌阈值的分析造成了很大的困难. 为此, 本文首先采用分段线性近似拟合该振子的刚度项, 发展了高斯色噪声和谐波激励共同作用下的非光滑系统的随机梅尔尼科夫方法. 其次, 基于随机梅尔尼科夫过程, 利用均方准则和相流函数理论分别得到了弱噪声和强噪声情况下该振子混沌阈值的解析表达式, 讨论了噪声强度对混沌动力学的影响. 研究结果表明, 随着噪声强度的增大混沌区域增大, 即增大噪声强度更容易诱发耦合SD振子产生混沌. 当阻尼一定时, 弱噪声情况下混沌阈值随噪声强度的增加而减小; 但是强噪声情况下噪声强度对混沌阈值的影响正好相反. 最后, 数值结果表明, 利用文中的方法研究高斯色噪声和谐波激励共同作用下耦合SD振子的混沌是有效的.本文的结果为随机非光滑系统的混沌动力学研究提供了一定的理论指导.   相似文献   

19.
一双峰混沌系统非线性动力学行为   总被引:1,自引:0,他引:1  
通过对一双峰混沌系统的非线性动力学行为的研究,发现随着系统参数的变化,双峰混沌系统由混沌状态开始,经阵发性混沌、不动点、倍周期分岔到受初始值的影响两个混沌吸引子,而后又收敛为另一个不动点,最后再次进入混沌状态。该系统呈现出复杂的非线性动力学行为。  相似文献   

20.
Global bifurcations and multi-pulse chaotic motions of flexible multi-beam structures derived from an L-shaped beam resting on a vibrating base are investigated considering one to two internal resonance and principal resonance. Base on the exact modal functions and the orthogonality conditions of global modes, the PDEs of the structure including both nonlinear coupling and nonlinear inertia are discretized into a set of coupled autoparametric ODEs by using Galerkin’s technique. The method of multiple scales is applied to yield a set of autonomous equations of the first order approximations to the response of the dynamical system. A generalized Melnikov method is used to study global dynamics for the “resonance case”. The present analysis indicates multi-pulse chaotic motions result from the existence of Šilnikov’s type of homoclinic orbits and the critical parameter surface under which the system may exhibit chaos in the sense of Smale horseshoes are obtained. The global results are finally interpreted in terms of the physical motion of such flexible multi-beam structure and the dynamical mechanism on chaotic pattern conversion between the localized mode and the coupled mode are revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号