首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A NEW METHOD OF INTEGER LINEAR PROGRAMMING—BRANCH DIRECTION SEARCH METHOD   总被引:1,自引:1,他引:0  
An endeavour is made in this paper to present a new and simple ILP algorithm foroptimization.It has the most desirable features of robustness and fast convergence.Thealgorithm is successful in applying it to some problems arisen in engineering design.  相似文献   

2.
PIV measurements for gas flow under gradient magnetic fields   总被引:1,自引:0,他引:1  
Particle Image Velocimetry (PIV) techniques were developed to measure the convective N2-air flow under gradient magnetic fields. The velocity fields were calculated by the Minimum Quadratic Difference (MQD) algorithm and spurious vectors were eliminated by Delaunay Tessellation.The N2-air flow was measured as the magnetic flux density varying from 0~1.5T. A strengthened vortex flow of air was observed under the condition that the magnetic field was applied, and the velocity of N2 jet rose with the increase of the magnetic density. The experimental results show that the magnetic force will induce a vortex flow and cause a convection flow of the air mixture when both gradients of the O2 concentration and the magnetic field intensity exist.  相似文献   

3.
The present study investigates the electromagnetic braking of buoyancy convective flows occurring in differentially heated cavities, filled with low Prandtl, dilute, incompressible and electrically conducting alloys, and subjected to a constant horizontal temperature gradient. In practice, such flows known as ‘Hadley circulation’ are relevant in material processing technologies, such as the horizontal Bridgman configuration. A collocation spectral numerical method is developed to solve the two-dimensional Navier–Stokes equations, modelling the flow phenomena occurring in such configurations, using a vorticity–stream function formulation. The two components of the velocity are deduced from the stream function and the temperature distribution is obtained through the resolution of the energy conservation equation. The results in terms of velocity and temperature distributions for a given Grashof number are obtained for various Hartmann numbers and show that as the Hartmann number increases, the electromagnetic braking of the flow is observed. Moreover, the results illustrate the changes affecting the flow structure which becomes quasi-parallel in the core region of the cavity for sufficiently high values of Ha and the onset of the Hartmann and parallel layers along the boundaries. Also, with increasing Ha, the isotherms are less affected by the convective flow and become parallel to the vertical walls indicating that heat transfer is mainly achieved by conduction.  相似文献   

4.
This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.  相似文献   

5.
In the present paper,we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a radial magnetic field.The induced magnetic field produced by the motion of an electrically conducting fluid is taken into account.The transport equations concerned with the considered model are first recast in the non-dimensional form and then unified analytical solutions for the velocity,induced magnetic field and temperature field are obtained for the cases of isothermal and constant heat flux on the inner cylinder of concentric annuli.The effects of the various physical parameters appearing into the model are demonstrated through graphs and tables.It is found that the magnitude of maximum value of the fluid velocity as well as induced magnetic field is greater in the case of isothermal condition compared with the constant heat flux case when the gap between the cylinders is less or equal to 1.70 times the radius of inner cylinder,while reverse trend occurs when the gap between the cylinders is greater than 1.71 times the radius of inner cylinder.These fields are almost the same when the gap between the cylinders is equal to 1.71 times the radius of inner cylinder for both the cases.It is also found that as the Hartmann number increases,there is a flattening tendency for both the velocity and the induced magnetic field.The influence of the induced magnetic field is to increase the velocity profiles.  相似文献   

6.
The problem of convection induced by radial buoyancy in an electrically conducting fluid contained by a rotating cylindrical annulus (angular frequency, ) in the presence of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap approximation is used together with rigid cylindrical boundaries. The onset of convection occurs in the form of axial, axisymmetric or oblique rolls. The angle between the roll axis and the axis of rotation depends of the ratio between the Chandrasekhar number, QB2, and the Coriolis number, . Fully three-dimensional numerical simulations as well as Galerkin representations for roll patterns including the subsequent stability analysis are used in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the asymptotically realized state may depend on the initial conditions. PACS 47.27.-i, 47.65.+a  相似文献   

7.
The stability of mechanical equilibrium of a horizontal layer of conducting fluid in the presence of a magnetic field rotating in a horizontal plane is considered. Both finite field rotation frequencies and the limiting case of high frequencies are investigated. It is shown that the magnetic field stabilizes the equilibrium. The dependence of the critical perturbation wavelength on the field strength is non-monotonic, and with increase in the magnetic field strength the mode of most dangerous perturbations changes from long-to short-wave type. Nonlinear three-dimensional convection regimes are calculated numerically. It is found that at finite supercriticalities and a sufficiently strong magnetic field the rolls and the hexagonal cells may be stable simultaneously.  相似文献   

8.
In this paper, the basic equations of two-phase liquid metal flow in a magnetic field are derived, and specifically, two-phase liquid metal MHD flow in a rectangular channel is studied, and the expressions of velocity distribution of liquid and gas phases and the ratioK 0 of the pressure drop in two-phase MHD flow to that in single-phase are derived. Results of calculation show that the ratioK 0 is smaller than unity and decreases with increasing void fraction and Hartmann number because the effective electrical conductivity in the two-phase case decreases. The Project is supported by the National Natural Science Foundation of China.  相似文献   

9.
This paper discusses the effect of thermophoretic particle deposition on the transient natural convection laminar flow along a vertical flat surface,which is immersed in an optically dense gray fluid in the presence of thermal radiation.In the analysis,the radiative heat flux term is expressed by adopting the Rosseland diffusion approximation.The governing equations are reduced to a set of parabolic partial differential equations.Then,these equations are solved numerically with a finite-difference scheme in the entire time regime.The asymptotic solutions are also obtained for sufficiently small and large time.The obtained asymptotic solutions are then compared with the numerical solutions,and they are found in excellent agreement.Moreover,the effects of different physical parameters,i.e.,the thermal radiation parameter,the surface temperature parameter,and the thermophoretic parameter,on the transient surface shear stress,the rate of surface heat transfer,and the rate of species concentration,as well as the transient velocity,temperature,and concentration profiles are shown graphically for a fluid(i.e.,air) with the Prandtl number of 0.7 at 20 C and 1.013 × 10 5 Pa.  相似文献   

10.
The general momentum equation for fluid flow within a porous medium is supposedly valid for any fluid-porous medium configuration. One of the main concerns of using the general equations refers to the inclusion of both inertia terms, namely, the convective inertia term and the Forchheimer term. In this study, we go beyond the important discussion about the correctness of including both terms in the general momentum equations by focusing upon the effect of the convective inertia term on the heat transfer results. The fluid-porous medium system considered here is a cavity bounded by solid surfaces with vertical walls maintained at constant but different temperatures. The natural convection problem is solved numerically, and the results are compared with a general theory developed by using the method of scale analysis. It is demonstrated that the convective inertia term effect upon the heat transfer results is minor for 0.01 ≤ Pr ≤ 1, 10 ≤ RaD ≤ 104, 10−8 ≤ Da ≤ 10−2, and porosities 0.4 and 0.8. It is also shown that, contrary to the general belief, the convective inertial effect upon the heat transfer within the cavity is minimized when the Prandtl number is reduced.  相似文献   

11.
Combined heat and mass transfer on free, forced, and mixed convection flow along a porous wedge with magnetic effect in the presence of chemical reaction is investigated. The flow field characteristics are analyzed by the Runge-Kutta-Gill scheme with the shooting method as well as the local non-similarity method up to the third level of truncation, which are used to reduce the governing partial differential equations into nine ordinary differential equations. The governing boundary layer equations are converted to a dimensionless form by Falkner-Skan transformations. Because of the effect of suction/injection on the wall of the wedge with buoyancy force and variable wall temperature, the flow field is locally non-similar. Numerical calculations up to the third order level of truncation are carried out as a special case for different values of dimensionless parameters. Effects of the magnetic field strength in the presence of chemical reaction with variable wall temperature and concentration on the dimensionless velocity, temperature and concentration profiles are shown graphically.  相似文献   

12.
The present study concerns the modelization and numerical simulation for the heat and flow exchange characteristics in a novel configuration saturated with a nonNewtonian Ag-MgO hybrid nanofluid. The wavy shaped enclosure is equipped with onequarter of a conducting solid cylinder. The system of equations resulting from the mathematical modeling of the physical problem in its dimensionless form is discretized via the higher-order Galerkin-based finite element method(GFEM). The dependency of vario...  相似文献   

13.
This study deals with the electromagnetic damping of free-convective flows in cavities such as those used in the crystal growth horizontal Bridgman configuration. The cavities are filled with a dilute electrically conducting alloy and are subjected to a horizontal temperature gradient. The flow is steady and laminar under an external, vertical, transversal and uniform magnetic field. Several cross sections of the cavities were investigated and can either be centro-symmetric or not. The governing equations for such problems are two coupled partial differential equations, for the velocity and the induced magnetic fields, coupled with a third integral equation for mass conservation. A finite element method has been developed, and the numerical results for the variation of the velocity and the induced magnetic field in terms of the Hartmann number show a considerable decrease in convection intensity as the Hartmann number increases. Results also reveal the presence of the well-known Hartmann and parallel layers. For non-centro-symmetric sections, results show the way the flow reorganises into two cells as the Hartmann number increases.  相似文献   

14.
This paper numerically examines the laminar forced convection of a water–Al2O3 nanofluid flowing through a horizontal microchannel. The middle section of the microchannel is heated with a constant and uniform heat flux. The middle section is also influenced by a transverse magnetic field with a uniform strength. The effects of pertinent parameters such as the Reynolds number (0≤Re≤1000), the solid volume fraction (0≤?≤0.04) and the Hartmann number (0≤Ha≤100) on the flow and temperature fields and the heat transfer performance of the microchannel are examined against numerical predictions. The results show that the microchannel performs better heat transfers at higher values of the Reynolds and Hartmann numbers. For all values of the Reynolds and Hartmann numbers considered in this study, the average Nusselt number on the middle section surface of the microchannel increases as the solid volume fraction increases. The rate of this increase is considerably more at higher values of the Reynolds number and at lower values of the Hartmann number.  相似文献   

15.
IntroductionManyexperimentsshow[1,2,3]thatthepercolationinlowPermeabilityisnotfittoDarcy'sLaw.Theparticularcharacteristheexistenceofthresholdpressuregradient[1],inotherwords:thefluidcanflow,onlywhentherealpressuregradientislargerthanthresholdpressuregradient.Thedevelopmentinthisresearchingfieldhasn'tmuchprogressbecauseofquestionsineconomicsandteelmologysincethisconceptwasformedin1951.ThisfieldisbecominganewwarmresearchingPOintasChinadevelopedthelowPermeabilityreservoirsinlastfewyears.Thego…  相似文献   

16.
The non-Newtonian effect in the boundary layer flow over a horizontal elliptical cylinder is investigated numerically. A modified power-law viscosity model is used to correlate the non-Newtonian characteristics of the fluid flow. For natural convectionflows, the surface of the cylinder is maintained by the uniform surface temperature(UST)or the uniform heat flux(UHF) condition. The governing equations corresponding to theflow are first transformed into a dimensionless non-similar form using suit...  相似文献   

17.
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion, induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.  相似文献   

18.
The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel(formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium.The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates.The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles.Then,the skin friction and the rate of heat transfer are consequently derived.It is noticed that,at different sections within the vertical channel,the fluid flow and the temperature profiles increase with time,which are both higher near the moving plate.In particular,increasing the gap between the plates increases the velocity and the temperature of the fluid,however,reduces the skin friction and the rate of heat transfer.  相似文献   

19.
非结构混合网格高超声速绕流与磁场干扰数值模拟   总被引:2,自引:0,他引:2  
对均匀磁场干扰下的二维钝头体无粘高超声速流场进行了基于非结构混合网格的数值模拟.受磁流体力学方程组高度非线性的影响及考虑到数值模拟格式的精度,目前在此类流场的数值模拟中大多使用结构网格及有限差分方法,因而在三维复杂外形及复杂流场方面的研究受到限制.本文主要探索使用非结构网格(含混合网格)技术时的数值模拟方法.控制方程为耦合了Maxwell方程及无粘流体力学方程的磁流体力学方程组,数值离散格式采用Jameson有限体积格心格式,5步Runge-Kutta显式时间推进.计算模型为二维钝头体,初始磁场均匀分布.对不同磁感应强度影响下的高超声速流场进行了数值模拟,并与有限的资料进行了对比,得到了较符合的结果.  相似文献   

20.
An experimental study was conducted to investigate the effect of bottom wall heating on the flow structure inside a horizontal square channel at low Reynolds numbers (Re) and high Grashof numbers (Gr). The flow field was found to be complex and three-dimensional due to the interactions of buoyancy-induced rising plumes of warm fluid, falling parcels of cold fluid and the shear flow. The mean streamwise velocity profiles were altered by bottom wall heating; and back flow was induced in the upper half of the channel when Gr/Re2 > 55. The bottom wall temperatures were found to have more significant influence on the turbulent velocity magnitudes than the flow rate. The Reynolds stress became negative in the channel core region indicating the momentum transfer from the turbulent velocity field to the buoyancy field. The POD analysis revealed the presence of convective cells primarily in the lower half of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号