首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In early 2002, Swedish National Food Administration (SNFA) and University of Stockholm together announced that certain foods that are processed or cooked at high temperature contain relatively high levels of acrylamide. The occurrence of acrylamide is derived from heat-induced reactions between the amino group of asparagine and the carbonyl group of reducing sugars during baking and frying. Corresponding chromatographic methods are used to determine various structural groups present during this process. Gas chromatography (GC)-mass spectrometry (MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis are both acknowledged as the major useful and authoritative methods for the acrylamide determination and other chromatographic methods are also briefly introduced. The aim of this review is to summarize the state-of-the-art about the occurrence, analytical methods, and extraction and clean-up procedures of acrylamide. Special attention is given to chromatographic techniques applied for the occurrence and determination of acrylamide.  相似文献   

2.
Analytical methods used to measure acrylamide concentrations in foods   总被引:1,自引:0,他引:1  
The state-of-the-art of analysis for acrylamide in food is reviewed. The majority of analytical methods adopts a similar approach: addition of internal standard to the specimen, extraction with water, purification of extract using a solid-phase extraction cartridge, and then determination using either gas chromatography coupled to mass spectroscopy (GC/MS) after bromination, or direct measurement with liquid chromatography coupled to mass spectroscopy (LC/MS). The available methods generally show good agreement and are likely to be accurate. However, improvements in precision (within-laboratory) and repeatability (between-laboratory) are needed by particular data users.  相似文献   

3.
A general scheme is set up for the estimation of the impurity profile of bulk drug substances by the complex use of chromatographic, spectroscopic and hyphenated techniques. Several examples are presented as illustrations to the scheme from the authors' laboratory involving the use of chromatographic methods such as thin-layer-(TLC), gas-(GC), analytical and preparative high-performance liquid chromatography (HPLC), spectroscopic methods such as mass spectrometry (MS) and NMR spectroscopy as well as hyphenated techniques (HPLC/diode-array UV, GC/MS and HPLC/MS). In addition to summarizing earlier work, new examples are also presented: identification of an impurity (propyl 4-[diethylcarbamoyl(methoxy)]-3-methoxy phenylglyoxylate, II) in propanidid (I) and two unsaturated impurities in allylstrenol (VII) by GC/MS and HPLC/diode-array UV as well as estimation of the impurity profile of mazipredone (III) by HPLC/MS and HPLC/diode-array UV.  相似文献   

4.
Pharmaceuticals have become major targets in environmental chemistry due to their presence in aquatic environments (following incomplete removal in wastewater treatment or point-source contaminations), threat to drinking water sources and concern about their possible effects to wildlife and humans. Recently several methods have been developed for the determination of drugs and their metabolites in the lower nanogram per litre range, most of them using solid-phase extraction (SPE) or solid-phase microextraction (SPME), derivatisation and finally gas chromatography mass spectrometry (GC-MS), gas chromatography tandem mass spectrometry (GC-MS/MS) and liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS). Due to the elevated polarity of non-steroidal anti-inflamatory drugs (NSAIDs), analytical techniques based on either liquid chromatography coupled to mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS) after a previous derivatisation step are essential. The most advanced aspects of current GC-MS, GC-MS/MS and LC-MS/MS methodologies for NSAID analysis are presented.  相似文献   

5.
The main function of cuticular lipids in insects is the restriction of water transpiration through the surface. Lipids are involved in various types of chemical communication between species and reduce the penetration of insecticides, chemicals, and toxins and they also provide protection from attack by microorganisms, parasitic insects, and predators. Hydrocarbons, which include straight-chain saturated, unsaturated, and methyl-branched hydrocarbons, predominate in the cuticular lipids of most insect species; fatty acids, alcohols, esters, ketones, aldehydes, as well as trace amounts of epoxides, ethers, oxoaldehydes, diols, and triacylglycerols have also been identified. Analyses of cuticular lipids are chemically relatively straightforward, and methods for their extraction should be simple. Classically, extraction has relied mainly on application of apolar solvents to the entire insect body. Recently, several alternative methods have been employed to overcome some of the shortcomings of solvent extraction. These include the use of solid-phase microextraction (SPME) fibers to extract hydrocarbons from the headspace of heated samples, SPME to sample live individuals, and a less expensive method (utilized for social wasps), which consists of the collection of cuticular lipids by means of small pieces of cotton rubbed on the body of the insect. Both classical and recently developed extraction methods are reviewed in this work. The separation and analysis of the insect cuticular lipids were performed by column chromatography, thin-layer chromatography (TLC), high performance liquid chromatography with a laser light scattering detector (HPLC-LLSD), gas chromatography (GC), and GC–mass spectrometry (MS). The strategy of lipid analysis with the use of chromatographic techniques was as follows: extraction of analytes from biological material, lipid class separation by TLC, column chromatography, HPLC-LLSD, derivatization, and final determination by GC, GC-MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, and liquid chromatography–mass spectrometry (LC-MS).  相似文献   

6.
This paper presents a comparison between liquid chromatography with ultraviolet detection (LC-UV), liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods developed for the multiresidue determination of 8 quinolones, around their maximum residue levels (MRLs) in pig muscle. The procedure involves common extraction of the quinolones from the tissues by traditional extraction, a step for clean-up and preconcentration of the analytes by solid-phase extraction (SPE) and a subsequent liquid chromatographic analysis. The methods present satisfactory results of linearity, precision and limits of quantification much lower than the MRLs established by the European Union for quinolones in pig tissues.  相似文献   

7.
The classical chromatographic technique, thin-layer chromatography (TLC), has been outpaced for some time by the more recent techniques of high-performance liquid chromatography (HPLC) and gas chromatography (GC). Recently, improved TLC layers, reliable spotting devices, new derivatization reagents, sophisticated chromatographic equipment and simple mathematical procedures for evaluation have become available and accepted. There seems to be a trend in many laboratories to re-introduce this classical but still young technique for quantitative analysis. Some of the facets involved and experiences from our laboratory are discussed in this article.  相似文献   

8.
Chromatographic methods as tools in the field of mycotoxins   总被引:1,自引:0,他引:1  
Achievements in the applications of chromatographic techniques in mycotoxicology are reviewed. Historically, column chromatography (CC) and paper chromatography (PC) were applied first, followed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and gas chromatography (GC). Although PC techniques are no longer used in the analysis of mycotoxins, selected applications of PC are included to underline historical continuity. The most important achievements published from 1980 onwards are described. They include clean-up methods, TLC, CC, HPLC and GC of mycotoxins in environmental samples, foods, feeds, body fluids and in studies on biosynthesis and biotransformations of mycotoxins. Advantages and disadvantages of chromatographic techniques used in mycotoxicology are also evaluated.  相似文献   

9.
In the last decade, liquid chromatography coupled to (tandem) mass spectrometry (LC-MS(-MS)) has become a versatile technique with many routine applications in clinical and forensic toxicology. However, it is well-known that ionization in LC-MS(-MS) is prone to so-called matrix effects, i.e., alteration in response due to the presence of co-eluting compounds that may increase (ion enhancement) or reduce (ion suppression) ionization of the analyte. Since the first reports on such matrix effects, numerous papers have been published on this matter and the subject has been reviewed several times. However, none of the existing reviews has specifically addressed aspects of matrix effects of particular interest and relevance to clinical and forensic toxicology, for example matrix effects in methods for multi-analyte or systematic toxicological analysis or matrix effects in (alternative) matrices almost exclusively analyzed in clinical and forensic toxicology, for example meconium, hair, oral fluid, or decomposed samples in postmortem toxicology. This review article will therefore focus on these issues, critically discussing experiments and results of matrix effects in LC-MS(-MS) applications in clinical and forensic toxicology. Moreover, it provides guidance on performance of studies on matrix effects in LC-MS(-MS) procedures in systematic toxicological analysis and postmortem toxicology.  相似文献   

10.
Hyphenated mass spectrometric techniques, particularly gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), are indispensable tools in clinical and forensic toxicology and in doping control owing to their high sensitivity and specificity. They are used for screening, library-assisted identification and quantification of drugs, poisons and their metabolites, prerequisites for competent expertise in these fields. In addition, they allow the study of metabolism of new drugs or poisons as a basis for developing screening procedures in biological matrices, most notably in urine, or toxicological risk assessment. Concepts and procedures using GC/MS and LC/MS techniques in the areas of analytical toxicology and the role of mass spectral libraries are presented and discussed in this feature article. Finally, perspectives of their future position are discussed.  相似文献   

11.
Sensitive and specific immunoassay screening methods for the detection of benzodiazepines in urine represent an important prerequisite for routine analysis in clinical and forensic toxicology. Moreover, emerging designer benzodiazepines force labs to keep their methodologies updated, in order to evaluate the reliability of the immunochemical techniques. This study aimed at evaluating the sensitivity and specificity of two different immunoassay methods for the detection of benzodiazepines in urine, through a comparison with the results obtained by a newly developed liquid chromatographic tandem mass spectrometric (LC-MS/MS) procedure. A cohort of authentic urine samples (N = 501) were processed, before and after a hydrolysis procedure, through two immunoassays and an LC-MS/MS method. The LC-MS/MS target procedure was optimized for monitoring 25 different molecules, among traditional and designer benzodiazepines, including some metabolites. At least one of the monitored substances was detected in 100 out of the 501 samples. A good specificity was observed for the two immunoassays (>0.99), independently of the cut-offs and the sample hydrolysis. The new kit demonstrated a fairly higher sensitivity, always higher than 0.90; in particular, a high cross-reactivity of the new immunoassay was observed for samples that tested positive for lorazepam and 7-aminoclonazepam. The two immunoassays appeared adequate to monitor not only traditional benzodiazepines but also new designer ones.  相似文献   

12.
Polymer manufacturers add antioxidants, waxes, dyes, and other materials to enhance polymer utility or processing. Numerous analytical methods are available to characterize various chemical aspects of polymers including methods interfaced with mass spectrometry (MS) such as pyrolysis (Py), gas chromatography (GC), liquid chromatography (LC), and thermogravimetric analysis (TGA). Current methods work well, but because of the necessity of extraction, chromatography, or thermal methods, most are too time consuming for high throughput analyses which might be necessary in, for example, regulatory laboratories. Here we discuss three MS methods for rapid analysis of polymers; multi-sample MALDI MS which allows rapid analysis of low molecular weight polymers, atmospheric pressure (AP) solids analysis probe MS for direct ambient additives analysis, and APPy MS for polymer identification. The latter methods provide information regardless of the composition or molecular weight of the polymeric material.  相似文献   

13.
采用高效液相色谱-串联质谱法(LC-MS/MS)快速测定食品包装纸中偶氮染料释放的4-氨基偶氮苯.试样在0.5 mol/L氢氧化钠溶液的碱性环境下,用连二亚硫酸钠还原试样中的偶氮染料,用甲基叔丁基醚反萃取还原裂解产生的4-氨基偶氮苯,经氮吹、甲醇复溶后,用液相色谱-串联质谱进行测定,内标法定量.方法优化了色谱分离、质谱、液液萃取和分散固相萃取等条件.最优化条件下方法的检出限为0.13 mg/kg,定量限为0.42 mg/kg,加标回收率在90%~95%之间(添加水平分别为1、10、30 mg/kg),相对标准偏差小于5%.  相似文献   

14.
The analytical behaviour of the relatively new pyrethroid insecticide tralomethrin has been evaluated by using gas chromatography (GC) with electron-capture and mass spectrometry (MS) detectors, and liquid chromatography (LC)-atmospheric pressure ionization mass spectrometry with electrospray interfacing. Under the GC conditions commonly used in pesticide residue analysis, it was found that tralomethrin is transformed into deltamethrin (in a reproducible way) in the injector port of the GC system. Results obtained in this work indicate that the GC multiresidue methodologies routinely applied in the analysis of pyrethroid pesticides in foods cannot distinguish between these two pesticides, and the chromatographic signal obtained at the retention time of deltamethrin/tralomethrin can be really quantified as either deltamethrin or tralomethrin, including when it is confirmed as deltamethrin by MS. Under the LC-MS conditions assessed in this work, deltamethrin and the two diasteroisomers of tralomethrin were well separated and identified.  相似文献   

15.
Organic extractables (substances extracted from materials used in pharmaceutical packaging) are discovered, identified, and quantified via screening of extracts with analytical methods including liquid chromatography with mass spectrometric detection (LC-MS). Because extractables include a large number of diverse compounds that are typically present in plastic extracts at low levels, the LC-MS methods must be broad scope and sensitive. To accomplish these objectives, screening studies typically couple gradient reversed-phase separations with electrospray MS detection (both positive and negative ion modes). While such methods are generally applicable for a number of extractables, they are not optimal for some commonly encountered extractables due to either poor chromatographic performance (e.g., peak tailing) or poor MS response. Modifications to mobile phase composition (e.g., pH adjustment) were examined to improve the performance of an LC-MS screening method. The use of 0.1% acetic acid with 1 mM ammonium acetate (pH 3.6) as the aqueous portion of the mobile phase provided favorable sensitivities for a number of extractables both in positive and negative ion modes. In positive ion mode, the acidic mobile phase improved responses for moderately weak basic compounds by increasing their degree of protonation. For very weak basic compounds such as amides, ammonium ions in the mobile phase promoted proton adduct responses. In negative ion mode, an acidic mobile phase containing acetate anion improved ESI responses for acidic compounds, primarily due to gas phase effects.  相似文献   

16.
Toxicology is a classic field of forensic medicine. Forensic toxicology includes the analysis of medical and illegal drugs and dangerous substances in order of courts, investigating authorities and hospitals. Fast and easy immunological techniques for assying drug familys or single drugs are available. The conventional methods for detection of drugs are generally instrumental procedures such as gas chromatography, high‐performance liquid chromatography and chromatography‐mass spectrometry.  相似文献   

17.
In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs —substances able to alter the normal hormone function of wildlife and humans—. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid–liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid–liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation.  相似文献   

18.
Organotin compounds (OTCs) are among the most hazardous substances found in the marine environment and can be determined by either the ISO 23161 method based on extraction with non-polar organic solvents and gas chromatography analysis or by the recently developed QuEChERS method coupled to liquid chromatography-mass spectrometry (LC-MS/MS). To date, the QuEChERS LC/MS and ISO 23161 methods have not been compared in terms of their fit-for-purpose and reliability in the determination of OTCs in bottom sediments. In the case of ISO 23161, due to a large number of interferences gas chromatography-mass spectrometry was not suitable for the determination of OTCs contrary to more selective determination by gas chromatography with an atomic emission detector. Moreover, it has been found that the derivatization of OTCs to volatile compounds, which required prior gas chromatography determination, was strongly affected by the sediments’ matrices. As a result, a large amount of reagent was needed for the complete derivatization of the compounds. Contrary to ISO 23161, the QuEChERS LC-MS/MS method did not require the derivatization of OTC and is less prone to interferences. Highly volatile and toxic solvents were not used in the QuEChERS LC-MS/MS method. This makes the method more environmentally friendly according to the principles of green analytical chemistry. QuEChERS LC-MS/MS is suitable for fast and reliable environmental monitoring of OTCs in bottom sediments from the Odra River estuary. However, determination of di- and monobutyltin by the QuEChERS LC-MS/MS method was not possible due to the constraints of the chromatographic system. Hence, further development of this method is needed for monitoring di- and monobutyltin in bottom sediments.  相似文献   

19.
The selectivity and sensitivity obtained with volatile liquid chromatographic (LC) methods are often inferior compared to non-volatile ones. However, the buffers often used in the non-volatile system are incompatible to mass spectrometry (MS). So, the characterisation of unknown peaks in a non-volatile system, based on data obtained from a volatile LC-MS method, is problematic. In this study, the unknown peaks in a non-volatile liquid chromatography coupled with ultraviolet detection (LC-UV) system were directly characterised by a volatile LC-MS system using a peak trapping technique. Each peak eluted from the non-volatile system was trapped by a switching valve and sent to a LC-MS system using a volatile mobile phase. Mass spectral data were acquired on an LCQ ion trap mass spectrometer equipped with electrospray ionisation (ESI) operated in the positive ion mode. Using this technique, the fragmentation behaviour of erythromycin and its related substances was studied and the components occurring in commercial samples were investigated. In total 25 compounds mentioned in the literature were traced. Fourteen more unknown impurities were also studied.  相似文献   

20.
Clinical and forensic toxicology laboratories are inundated with thousands of samples requiring lengthy chromatographic separations prior to mass spectrometry. Here, we employ differential mobility spectrometry (DMS) interfaced to nano-electrospray ionization-mass spectrometry to provide a rapid ion filtration technique for the separation of ions in gas phase media prior to mass spectral analysis on a DMS-integrated AB SCIEX API 3000 triple-quadrupole mass spectrometer. DMS is efficient at the rapid separation of ions under ambient conditions and provides many advantages when used as an ion filtration technique in tandem with mass spectrometry (MS) and MS/MS. Our studies evaluated DMS-MS/MS as a rapid, quantitative platform for the analysis of drug metabolites isolated from urine samples. In targeted applications, five metabolites of common drugs of abuse were effectively and rapidly separated using isopropanol and ethyl acetate as transport gas modifiers, eliminating the gas chromatography or liquid chromatography-based separations commonly employed in clinical and forensic toxicology laboratories. Calibration curves were prepared for the selected drug metabolites utilizing deuterated internal standards for quantitative purposes. The feasibility of separating and quantitating drug metabolites in a rapid fashion was evaluated by compensation voltage stepping followed by multiple reaction monitoring (MRM) detection. Rapid profiling of clinical and forensic toxicology samples could help to address an urgent need within the scientific community by developing high-throughput analytical methodologies, which could reduce significant case backlogs present within these laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号