首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
Periodic wave solutions and solitary wave solutions to a generalized (3+1)-dimensional Gross-Pitaevskii equation with time-modulated dispersion, nonlinearity, and potential are derived in terms of an improved homogeneous balance principle and a mapping approach. These exact solutions exist under certain conditions via imposing suitable constraints on the functions describing dispersion, nonlinearity, and potential. The dynamics of the derived solutions can be manipulated by prescribing specific time-modulated dispersions, nonlinearities, and potentials. The results show that the periodic waves and solitary waves with novel behaviors are similar to the similaritons reported in other nonlinear systems.  相似文献   

2.
We discuss the possible nonlinear waves of atomic matter waves in a cigar-shaped Bose-Einstein condensatewith dissipation. The waves can be described by a KdV-type equation. The KdV-type equation has a solitary wave solution. The amplitude, speed, and width of the wave vary exponentially with time t. The dissipative term of ~/ plays an important role for the wave amplitude, speed, and width. Comparisons have been given between the analytical solutions and the numerical results. It is shown that both are in good agreement.  相似文献   

3.
化存才  刘延柱 《中国物理》2002,11(6):547-552
For the nonlinear wave equation with quartic polynomial potential, bifurcation and solitary waves are investigated. Based on the bifurcation and the energy integral of the two-dimensional dynamical system satisfied by the travelling waves, it is very interesting to find different sufficient and necessary conditions in terms of the bifurcation parameter for the existence and coexistence of bright, dark solitary waves and shock waves. The method of direct integration is developed to give all types of solitary wave solutions. Our method is simpler than other newly developed ones. Some results are similar to those obtained recently for the combined KdV-mKdV equation.  相似文献   

4.
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.  相似文献   

5.
The dissipative nonlinear Schrdinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dissipation effect and external forcing in rotational stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt–Vaisala frequency and β effect are important factors in forming the envelope solitary Rossby waves. By employing Jacobi elliptic function expansion method and Hirota's direct method, the analytic solutions of dissipative nonlinear Schr¨odinger equation and forced nonlinear Schr¨odinger equation are derived, respectively. With the help of these solutions, the effects of dissipation and external forcing on the evolution of envelope solitary Rossby wave are also discussed in detail. The results show that dissipation causes slowly decrease of amplitude of envelope solitary Rossby waves and slowly increase of width, while it has no effect on the propagation speed and different types of external forcing can excite the same envelope solitary Rossby waves. It is notable that dissipation and different types of external forcing have certain influence on the carrier frequency of envelope solitary Rossby waves.  相似文献   

6.
In this paper,we investigate a(2+1)-dimensional nonlinear equation model for Rossby waves in stratified fluids.We derive a forced Zakharov–Kuznetsov(ZK)–Burgers equation from the quasigeostrophic potential vorticity equation with dissipation and topography under the generalized beta effect,and by utilizing temporal and spatial multiple scale transform and the perturbation expansion method.Through the analysis of this model,it is found that the generalized beta effect and basic topography can induce nonlinear waves,and slowly varying topography is an external impact factor for Rossby waves.Additionally,the conservation laws for the mass and energy of solitary waves are analyzed.Eventually,the solitary wave solutions of the forced ZK–Burgers equation are obtained by the simplest equation method as well as the new modified ansatz method.Based on the solitary wave solutions obtained,we discuss the effects of dissipation and slowly varying topography on Rossby solitary waves.  相似文献   

7.
A unified theory to construct exact optical rogue wave solutions of (1+1)-dimensional nonlinear Schrdinger equation with varying coefficients is proposed. The dynamics of the first-order optical rogue waves in nonlinear graded-index waveguide amplifiers exhibiting self-focusing or self-defocusing Kerr nonlinearity are also investigated. Moreover, under the suitable parameter condition, the propagation characteristics of the rogue waves in the nonlinear optical media are discussed. The properties of the optical rogue waves, such as width, amplitude, and position, can be controlled in the nonlinear optical media.  相似文献   

8.
The basic set of fluid equations can be reduced to the nonlinear Kortewege-de Vries(KdV)and nonlinear Schro¨dinger(NLS)equations.The rational solutions for the two equations has been obtained.The exact amplitude of the nonlinear ion-acoustic solitary wave can be obtained directly without resorting to any successive approximation techniques by a direct analysis of the given field equations.The Sagdeev’s potential is obtained in terms of ion acoustic velocity by simply solving an algebraic equation.The soliton and double layer solutions are obtained as a small amplitude approximation.A comparison between the exact soliton solution and that obtained from the reductive perturbation theory are also discussed.  相似文献   

9.
朱加民  郑春龙  马正义 《中国物理》2004,13(12):2008-2012
A general mapping deformation method is applied to a generalized variable coefficient KdV equation. Many new types of exact solutions, including solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions and other exact excitations are obtained by the use of a simple algebraic transformation relation between the generalized variable coefficient KdV equation and a generalized cubic nonlinear Klein-Gordon equation.  相似文献   

10.
11.
We consider a generalized fifth-order KdV equation with time-dependent coefficients exhibiting higher-degree nonlinear terms. This nonlinear evolution equation describes the interaction between a water wave and a floating ice cover and gravity-capillary waves. By means of the subsidiary ordinary differential equation method, some new exact soliton solutions are derived. Among these solutions, we can find the well known bright and dark solitons with sech and tanh function shapes, and other soliton-like solutions. These solutions may be useful to explain the nonlinear dynamics of waves in an inhomogeneous KdV system supporting high-order dispersive and nonlinear effects.  相似文献   

12.
毛杰健  杨建荣 《物理学报》2013,62(13):130205-130205
基于一般的浅水波方程, 根据大尺度正压大气的特点, 得到无量纲的控制大尺度大气的动力学非线性方程组. 利用多尺度法, 由无量纲的动力学方程组导出了扰动位势的非线性控制方程. 采用椭圆方程构造该扰动位势控制方程的解, 获得了扰动位势和速度的多周期波与冲击波(爆炸波) 并存的解析解. 扰动位势的解表明经向和纬向具有不同周期和波长的周期波, 且都受纬向孤波的调制; 速度的解表明大尺度大气流动存在气旋和反气旋周期性分布的现象. 关键词: 浅水波方程 大尺度正压大气 解析解 非线性波  相似文献   

13.
By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg-de Vries (KdV)-Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves.  相似文献   

14.
By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg-de Vries (KdV)-Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves.  相似文献   

15.
Ping Liu 《中国物理 B》2021,30(8):80203-080203
We study a forced variable-coefficient extended Korteweg-de Vries (KdV) equation in fluid dynamics with respect to internal solitary wave. Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevé expansion. When the variable coefficients are time-periodic, the wave function evolves periodically over time. Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations. One-parameter group transformations and one-parameter subgroup invariant solutions are presented. Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method. The consistent Riccati expansion (CRE) solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE. Interaction phenomenon between cnoidal waves and solitary waves can be observed. Besides, the interaction waveform changes with the parameters. When the variable parameters are functions of time, the interaction waveform will be not regular and smooth.  相似文献   

16.
浅水体系中的多孤立波   总被引:12,自引:0,他引:12       下载免费PDF全文
陈黎丽  陈伟中 《物理学报》2002,51(5):955-960
形式分离变量法被推广应用于寻求不可积模型的多孤立波解.特别地,应用形式分离变量法于三个描述浅水体系的非线性方程:推广WhithamBroerKaup(WBK)方程、2+1维耦合KortewegdeVries(KdV)方程和1+1维耦合KdV方程,给出了这些体系的明显的解析的多孤立波解 关键词: 浅水体系 多孤立波 形式分离变量法 不可积模型  相似文献   

17.
费金喜  郑春龙 《中国物理 B》2012,21(7):70304-070304
Periodic wave solutions and solitary wave solutions to a generalized (3+1)-dimensional Gross--Pitaevskii equation with time-modulated dispersion, nonlinearity, and potential are derived in terms of an improved homogeneous balance principle and a mapping approach. These exact solutions exist under certain conditions via imposing suitable constraints on the functions describing dispersion, nonlinearity, and potential. The dynamics of the derived solutions can be manipulated by prescribing specific time-modulated dispersions, nonlinearities, and potentials. The results show that the periodic waves and solitary waves with novel behaviors are similar to similaritons reported in other nonlinear systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号