首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Saha S  Heuer DM  Archer LA 《Electrophoresis》2006,27(16):3181-3194
Electrophoresis of large linear T2 (162 kbp) and 3-arm star-branched (N(Arm) = 48.5 kbp) DNA in linear polyacrylamide (LPA) solutions above the overlap concentration c* has been investigated using a fluorescence visualization technique that allows both the conformation and mobility mu of the DNA to be determined. LPA solutions of moderate polydispersity index (PI approximately 1.7-2.1) and variable polymer molecular weight Mw (0.59-2.05 MDa) are used as the sieving media. In unentangled semidilute solutions (c* < c < c(e)), we find that the conformational dynamics of linear and star-branched DNA in electric fields are strikingly different; the former migrating in predominantly U- or I-shaped conformations, depending on electric field strength E, and the latter migrating in a squid-like profile with the star-arms outstretched in the direction opposite to E and dragging the branch point through the sieving medium. Despite these visual differences, mu for linear and star-branched DNA of comparable size are found to be nearly identical in semidilute, unentangled LPA solutions. For LPA concentrations above the entanglement threshold (c > c(e)), the conformation of migrating linear and star-shaped DNA manifest only subtle changes from their unentangled solution features, but mu for the stars decreases strongly with increasing LPA concentration and molecular weight, while mu for linear DNA becomes nearly independent of c and Mw. These findings are discussed in the context of current theories for electrophoresis of large polyelectrolytes.  相似文献   

2.
Electrophoresis of lambda phage DNA was carried out in solutions at various concentrations of uncrosslinked polyacrylamide of 0.6, 1, 5 and 9 x 10(6) molecular weight (Mw) with narrow Mw distribution. By inspection of mobilities in the various concentration ranges, it appears that mobilities decrease, and retardation increases, with increasing Mw. The relation between electrophoretic retardation and the Mw of the polymer was also interpreted (i) in the manner previously applied to nonlinear Ferguson plots and compatible with the Ogston model; and (ii) empirically, on the basis of the first derivatives of the functions describing the Ferguson plots at the polymer concentrations used. Interpretation (i) shows that the retardation increases linearly in the order of 0.6, 1, 5 and 9 x 10(6) Mw of polyacrylamide. Interpretation (ii) shows a nonlinear increase of retardation in the Mw range 5 to 9 x 10(6), and a decrease in retardation as Mw is raised from 0.6 to 5.0 x 10(6). Hypothetically, interpretation (ii) can be explained mechanistically by a progressive change, as the polymer size is increased, from a collision with the surface of the polymer fiber to one occurring after permeation in the interior of a random-coiled fiber. Interpretation (i) may fail to detect that change due to the large difference between DNA mobility in solutions of the smallest polymer and the free mobility. DNA peak detection in all of the four size classes of polyacrylamide in solution is limited to relatively narrow ranges of polymer concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Turbulent drag reduction in Couette flow was investigated in terms of a decrease in wall shear stress for aqueous solutions of a nonionic polymer, poly(ethylene oxide) (PEO), a cationic surfactant, hexadecyltrimethylammonium chloride (HTAC), and their mixtures. Consistent with literature data, drag reduction was observed for PEO solutions above a critical molecular weight, 0.91 x 10(5) < Mc < 3.04 x 10(5) g/mol. Maximum drag reduction occurred at an optimum concentration, c(PEO)*, which scales inversely with molecular weight, and the % maximum drag reduction increases with molecular weight. For aqueous HTAC solutions, wall shear stress decreased with increasing HTAC concentration and leveled off at an optimum concentration, c(HTAC)*, comparable to the critical micelle concentration. For HTAC/PEO mixtures, the critical PEO molecular weight for drag reduction decreases, interpreted as due to an increase in hydrodynamic volume because of binding of HTAC micelles to PEO. Consistent with this interpretation, at fixed PEO concentration, maximum drag reduction was observed at an optimum HTAC concentration, c(HTAC/PEO)*, comparable to the maximum binding concentration, MBC. Also, with HTAC concentration fixed at the MBC, the optimum PEO concentration for drag reduction, c(PEO/HTAC)*, decreases relative to that, c(PEO)*, in the absence of HTAC.  相似文献   

4.
For a highly charged particle in an electrolyte solution, counterions are condensed very near the particle surface. The electrochemical potential of counterions accumulated near the particle surface is thus not affected by the applied electric field, so that the condensed counterions do not contribute to the particle electrophoretic mobility. In the present paper we derive an expression for the electrophoretic mobility mu(infinity) of a highly charged spherical particle of radius a and zeta potential zeta in the limit of very high zeta in a solution of general electrolytes with large ka (where k is the Debye-Hückel parameter) on the basis of our previous theory for the case of symmetrical electrolytes (H. Ohshima, J. Colloid Interface Sci. 263 (2003) 337). It is shown that zeta can formally be expressed as the sum of two components: the co-ion component, zetaco-ion, and the counterion component, zetacounterion (where zeta = zetaco-ion + zetacounterion) and that the limiting electrophoretic mobility mu(infinity) is given by mu(infinity) = epsilonr epsilon0 zetaco-ion(infinity)/eta + 0(1/ka), where zetaco-ion(infinity) is the high zeta-limiting form of zetaco-ion, epsilonr and eta are, respectively, the relative permittivity and viscosity of the solution, and epsilon0 is the permittivity of a vacuum. That is, the particle behaves as if its zeta potential were zetaco-ion(infinity), independent of zeta. For the case of a positively charged particle in an aqueous electrolyte solution at 25 degrees C, the value of zetaco-ion(infinity) is 35.6 mV for 1-1 electrolytes, 46.0 mV for 2-1 electrolytes, and 12.2 mV for 1-2 electrolytes. It is also found that the magnitude of mu(infinity) increases as the valence of co-ions increases, whereas the magnitude of mu(infinity) decreases as the valence of counterions increases.  相似文献   

5.
Pyell U 《Electrophoresis》2008,29(3):576-589
The electrophoretic mobility of silica-encapsulated semiconductor nanocrystals (quantum dots) dependent on the pH and the ionic strength of the separation electrolyte has been determined by CE. Having shown the viability of the approach, the electrophoretic mobility mu of the nanoparticles investigated is calculated for varied zeta potential zeta, particle radius r, and ionic strength I employing an approximate analytical expression presented by Ohshima (J. Colloid Interface Sci. 2001, 239, 587-590). The comparison of calculated with measured data shows that the experimental observations exactly follow what would be expected from theory. Within the parameter range investigated at fixed zeta and I there is an increase in mu with r which is a nonlinear function. This dependence of mu on size parameters can be used for the size-dependent separation of particles. Modeling of mu as function of I and zeta makes it possible to calculate the size distribution of nanoparticles from electrophoretic data (using the peak shape of the particle zone in the electropherogram) without the need for calibration provided that zeta is known with adequate accuracy. Comparison of size distributions calculated via the presented method with size histograms determined from transmission electron microscopy (TEM) micrographs reveals that there is an excellent matching of the size distribution curves obtained with the two independent methods. A comparison of calculated with measured distributions of the electrophoretic mobility showed that the observed broad bands in CE studies of colloidal nanoparticles are mainly due to electrophoretic heterogeneity resulting from the particle size distribution.  相似文献   

6.
 Polymer-induced turbulent drag reduction in a rotating disk apparatus was investigated using nonionic poly(ethylene oxide) (PEO) in a synthetic saline solution with novel application to ocean thermal energy conversion technology. A maximum total (skin friction plus form) drag reduction of 30% was obtained with 50 wppm of PEO with molecular weight 5.0 × 106. The concentration dependence of the percentage drag reduction for the PEO/saline solution system is found to fit Virk's empirical correlation, and a universal correlation for various molecular weights and Reynolds numbers is also presented. Furthermore, hydrodynamic volume fraction was introduced to correlate drag reduction efficiency with molecular parameters in this PEO/saline solution system. Received: 28 December 1999/Accepted: 17 February 2000  相似文献   

7.
采用凝胶色谱与多角激光光散射联用的方法,测定了一系列不同分子量的聚乙二醇(PEG)和聚氧化乙烯(PEO)在色谱柱中的扩展效应.扩展因子随PEG/PEO分子量的增加而增大,经扩展效应改正后得到了样品的准确分子量和分子量分布.同时建立了PEO的Z均回转半径Rgz与重均分子量Mw之间的单分散标度关系:Rgz=0.0272 Mw0.56,结果表明,长链PEO在水溶液中由于排除体积效应采取溶胀的无规线团构象.  相似文献   

8.
Cottet H  Gareil P 《Electrophoresis》2001,22(4):684-691
The activation energy associated with the electrophoretic migration of an analyte under given electrolyte conditions can be accessed through the determination of the analyte electrophoretic mobility at various temperatures. In the case of the electrophoretic separation of polyelectrolytes in the presence of an entangled polymer network, activation energy can be regarded as the energy needed by the analyte to overcome the obstacles created by the separating network. Any deformation undergone by the analyte or the network is expected to induce a decrease in the activation energy. In this work, the electrophoretic mobilities of poly(styrenesulfonates) (PSSs) of various molecular weights (Mr 16 x 10(3) to 990 x 10(3)) were determined in entangled polyethylene oxide (PEO) solutions as a function of temperature (in the 17-60 degrees C range) and the PSS activation energies were calculated. The influences of the PSS molecular weight, blob sizes zetab of the separating network (related to the PEO concentration), ionic strength of the electrolyte and electric field strength (75-600 V/cm) were investigated. The results were interpreted in terms of analyte and network deformations and were confronted with those previously obtained for DNA migration in polymer solutions and chemical gels. For a radius of gyration Rgzetab, suggesting PSS and network deformations in the latter case. Increasing ionic strength resulted in an increase in the PSS activation energy, because of the decrease of their radii of gyration, which makes them less deformable. Finally, the activation energies of all the PSSs are a decreasing function of field strength and at high field strength tend to reach a constant value close to that for a small molecule.  相似文献   

9.
Mercier JF  Slater GW 《Electrophoresis》2006,27(8):1453-1461
The separation of DNA fragments by (slab or capillary) gel electrophoresis has been studied extensively. To characterize the separation achieved by such systems, one needs to understand the impact (and their dependency upon the experimental quantities) of two physical parameters: the electrophoretic mobility mu and the diffusion coefficient D. Three different regimes have been shown to exist for both mu and D: the Ogston regime, the reptation regime and the reptation with orientation regime (note that separation is only possible for the first two regimes). In the small electric field limit, both mu and D are apparently well described by theories for all three regimes. Unfortunately this results in disjointed scaling laws and no theory-based general equations can apply to all regimes. Recently, an empirical interpolating formula has been proposed that adequately fits the low electric field mobility mu of dsDNA fragments across all three regimes and is compatible with accepted theories. In this article we review and clarify the current state of knowledge regarding the size dependence of the mobility and the diffusion coefficient and propose an interpolating formula for molecular size dependence of the low field diffusion coefficient D. With formulas for both the mobility and the diffusion coefficient as a function of the experimental conditions one could, in principle, optimize any gel/polymer matrix-based electrophoresis system for a wide range of DNA molecular sizes.  相似文献   

10.
Heuer DM  Saha S  Archer LA 《Electrophoresis》2003,24(19-20):3314-3322
We have developed a procedure for synthesizing large stable branched DNA structures that enables visualization via fluorescence microscopy. Using this procedure we have synthesized large DNA stars and observed their electrophoretic behavior in polymer solutions and gels. In dilute polyacrylamide solutions, the DNA stars move as random coils and appear to experience only brief collisions with the polymer chains in solution. The effect of polymer solution concentration on the electrophoretic mobility of stars in the dilute regime is found to be in good accord with predictions of the transient entanglement coupling (TEC) model. In semidilute polymer solutions, the star arms extend in the field direction and drag the core through the matrix. The star arms form several U-shaped conformations as they collide and engage with polyacrylamide chains. The U-shaped conformations occasionally evolve into J-shaped conformations as the star arms slide off the matrix chains they engage during electrophoretic migration. In concentrated polymer solutions, the arms of the star extend and form V-shaped structures with the core as the apex. The arms then pull the core through the matrix. These V-shaped conformations are much longer-lived than U-shaped ones and, unlike the latter, do not transform to J-shaped conformations. In polyacrylamide and agarose gels, where matrix entanglements are fixed, DNA stars become trapped when entanglements with matrix molecules prevent the core from being pulled through the matrix by the extended arms. This trapping was observed at all gel concentrations and electric fields studied.  相似文献   

11.
Polystyrene sulfate particles of 0.37 to 1.78 mu in diameter are retarded in their electrophoretic migration in proportion to the concentration of agarose liquified above its gelling temperature. In the concentration range of 0.02 to 0.2% liquified agarose, the degree of this retardation in electrophoresis at 40 degrees C is inversely related to particle size. By contrast, mitochondrial DNA (16 kb), plasmid pBR322 DNA (4 kb) and plasmid PSA509 DNA (3 kb) exhibit under the same conditions a degree of retardation which is proportional to their size. This confirms the existence of two divergent mechanisms of size separation similarly observed in other liquid polymer media, i.e. one based on collisions with the gel fiber (molecular sieving) and one based on exclusion from the fiber network (the electrophoretic equivalent of gel permeation).  相似文献   

12.
The adsorption of polyethylene oxide (PEO) homologues in a wide range of molecular weight (from M(PEO)=200 to 10(6)) at the air/aqueous solution interface was investigated by dynamic and static surface tension measurements. An approximate estimate for the lower limit of PEO concentration was given at which reliable equilibrium surface tension can be determined from static surface tension measurements. It was shown that the observed jump in the earlier published sigma-lg(c(PEO)) curves is attributable to the nonequilibrium surface tension values at low PEO concentrations. The adsorption behavior of short chain PEO molecules (M(PEO)1000) is similar to that of the ordinary surfactants. The estimated standard free energy of PEO adsorption, DeltaG(0), increases linearly with the PEO molecular weight until M(PEO)=1000. In this molecular weight range, DeltaG(0) was found to be approximately the fifth of the hydrophobic driving force related to the adsorption of a surfactant with the same number of methylene groups. In the case of the longer chain PEOs the driving force of adsorption is so high that the adsorption isotherm is near saturation in the experimentally available polymer concentration range. Above a critical molecular weight the PEO adsorption reveals universal features, e.g., the surface tension and the surface density of segments do not depend on the polymer molecular weight.  相似文献   

13.
Electrophoretic mobility of oil droplets of micron sizes in PBS and ionic surfactant solutions was measured in this paper. The experimental results show that, in addition to the applied electric field, the speed and the direction of electrophoretic motion of oil droplets depend on the surfactant concentration and on if the droplet is in negatively charged SDS solutions or in positively charged hexadecyltrimethylammonium bromide (CTAB) solutions. The absolute value of the electrophoretic mobility increases with increased surfactant concentration before the surfactant concentration reaches to the CMC. It was also found that there are two vortices around the oil droplet under the applied electric field. The size of the vortices changes with the surfactant and with the electric field. The vortices around the droplet directly affect the drag of the flow field to the droplet motion and should be considered in the studies of electrophoretic mobility of oil droplets. The existence of the vortices will also influence the determination and the interpretation of the zeta potential of the oil droplets based on the measured mobility data.  相似文献   

14.
Frankel's law predicts that the thickness of a Newtonian soap film entrained at small capillary number scales as Ca2/3 provided the bounding surfaces are rigid. Previous studies have shown that soap films containing low concentrations of high molecular weight (Mw) polymer can exhibit strong deviations from this scaling at low Ca, especially for associating surfactant-polymer solutions. We report results of extensive measurements by laser interferometry of the entrained film thickness versus Ca for the associating pair SDS/PEO over a large range in polymer molecular weight. Comparison of our experimental results to predictions of hydrodynamic models based on viscoelastic behavior shows poor agreement. Modification of the Frankel derivation by an interfacial slip condition yields much improved agreement. These experiments also show that the slip length increases as where zeta = 0.58 +/- 0.07. This correlation is suggestive of the Tolstoi-Larsen prediction that the slip length increases in proportion to the characteristic size of the fluid constituent despite its original derivation for liquid-solid interfaces.  相似文献   

15.
The electric field dependence of the electrophoretic mobility of linear DNA fragments in agarose gels was reinvestigated in order to correct the observed mobilities for the different temperatures actually present in the gel during electrophoresis in different electric field gradients. When corrected to a common temperature, the electrophoretic mobilities of DNA fragments less than or equal to 1 kilobase pairs (kbp) in size were independent of electric field strength at all field strengths from 0.6 to 4.6 V/cm if the gels contained less than or equal to 1.4% agarose. The mobilities of larger DNA fragments increased approximately linearly with electric field strength. If the agarose concentration was higher than 2%, the mobilities of all DNA fragments increased with increasing electric field strength. The electric field dependence of the mobility was larger in gels cast and run in Tris-borate buffer (TBE) than in gels cast and run in Tris-acetate buffer (TAE), and was more pronounced in gels without ethidium bromide incorporated in the matrix. Ferguson plots were constructed for the various DNA fragments, both with and without extrapolating the temperature-corrected mobilities to zero electric field strength. Linear Ferguson plots were obtained for all fragments less than or equal to 12 kbp in size in agarose gels less than or equal to 1.4% in concentration if the mobilities were first extrapolated to zero electric field strength. Concave upward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 2 kbp in size at finite electric field strengths. Convex downward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 1 kbp in size in agarose gels greater than or equal to 2% in concentration. The mobilities of the various DNA fragments, extrapolated to zero agarose concentration and zero electric field strength, decreased with increasing DNA molecular weight; extrapolating to zero molecular weight gave an "intrinsic" DNA mobility of 2.7 x 10(-4) cm2/Vs at 20 degrees C. The pore sizes of LE agarose gels cast and run in TAE and TBE buffers were estimated from the mobility of the DNA fragments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Zhu W  Vigh G 《Electrophoresis》2000,21(10):2016-2024
The capillary electrophoretic separation of cationic enantiomers with single-isomer multivalent anionic resolving agents was reexamined with the help of the charged resolving agent migration model. Three general model parameters were identified that influence the shape of the separation selectivity and enantiomer mobility difference curves: parameter b, the binding selectivity (K(RCD)/K(SCD)), parameter s, the size selectivity (mu0(RCD)/mu0(SCD)), and parameter a, the complexation-induced alteration of the analyte's mobility (mu0(RCD)/mu0). In addition to the previously observed discontinuity in separation selectivity that occurs as mu(eff) of the less mobile enantiomer changes from cationic to anionic, a new feature, a separation selectivity maximum was predicted to occur in the resolving agent concentration range where both enantiomers migrate cationically provided that (i) K(RCD)/K(SCD) <1 and mu0(RCD)/mu0(SCD) >1 and (K(RCD)mu0(RCD))/(K(SCD)mu0(SCD)) > 1, or (ii) K(RCD)/K(SCD) >1 and mu0(RCD)/mu0(SCD) <1 and (K(RCD)mu0(RCD))/(K(SCD)mu0(SCD)) <1. This hitherto unseen separation selectivity pattern was experimentally verified during the nonaqueous capillary electrophoretic separation of the enantiomers of four weak base analytes in acidic methanol background electrolytes with octakis(2,3-diacetyl-6-sulfato)-gamma-cyclodextrin (ODAS-gammaCD) as resolving agent.  相似文献   

17.
A relation between the dynamic electrophoretic mobility of spherical colloidal particles in a concentrated suspension and the colloid vibration potential (CVP) generated in the suspension by a sound wave is obtained from the analogy with the corresponding Onsager relation between electrophoretic mobility and sedimentation potential in concentrated suspensions previously derived on the basis of Kuwabara's cell model. The obtained expression for CVP is applicable to the case where the particle zeta potential is low, the particle relative permittivity is very small, and the overlapping of the electrical double layers of adjacent particles is negligible. It is found that CVP shows much stronger dependence on the particle volume fraction φ than predicted from the φ dependence of the dynamic electrophoretic mobility. It is also suggested that the same relation holds between the electrokinetic sonic amplitude of a concentrated suspension of spherical colloidal particles and the dynamic electrophoretic mobility. Copyright 1999 Academic Press.  相似文献   

18.
A boundary element (BE) procedure is developed to numerically calculate the electrophoretic mobility of highly charged, rigid model macroions in the thin double layer regime based on the continuum primitive model. The procedure is based on that of O'Brien (R.W. O'Brien, J. Colloid Interface Sci. 92 (1983) 204). The advantage of the present procedure over existing BE methodologies that are applicable to rigid model macroions in general (S. Allison, Macromolecules 29 (1996) 7391) is that computationally time consuming integrations over a large number of volume elements that surround the model particle are completely avoided. The procedure is tested by comparing the mobilities derived from it with independent theory of the mobility of spheres of radius a in a salt solution with Debye-Huckel screening parameter, kappa. The procedure is shown to yield accurate mobilities provided (kappa)a exceeds approximately 50. The methodology is most relevant to model macroions of mean linear dimension, L, with 1000>(kappa)L>100 and reduced absolute zeta potential (q|zeta|/k(B)T) greater than 1.0. The procedure is then applied to the compact form of high molecular weight, duplex DNA that is formed in the presence of the trivalent counterion, spermidine, under low salt conditions. For T4 DNA (166,000 base pairs), the compact form is modeled as a sphere (diameter=600 nm) and as a toroid (largest linear dimension=600 nm). In order to reconcile experimental and model mobilities, approximately 95% of the DNA phosphates must be neutralized by bound counterions. This interpretation, based on electrokinetics, is consistent with independent studies.  相似文献   

19.
The electrophoretic behaviour of a series of 33 different synthetic peptides has been investigated using free solution high-performance capillary zonal electrophoretic (HPCZE) methods. The dependency of the electrophoretic mobility, mu(em), on the peptide charge, q, and on the charge-to-size ratio parameter, zeta, determined according to several electromobility models, have been examined. Significant divergences from linearity in the mu(em) vs. q or the mu(em) vs. zeta plots were noted for several peptides, possibly due to the proclivity of specific arrangements of their amino acid sequences to assume preferred alpha-helical or beta-sheet conformational features rather than random coil structures under the HPCZE conditions. These results provide further demonstration of the facility of HPCZE procedures to probe the effects of compositional, sequential and conformational differences of closely-related peptides and their consequences on their physicochemical behaviour in solution.  相似文献   

20.
An experimental investigation on electrophoresis of calcium oxalate monohydrate in several liquid mixtures (methanol-, ethanol-, 2-propanol-, and methanol-acetonewater) is described.The electrophoretic transport is considered from the view-point of the Thermodynamics of Irreversible Processes. Linear relations have always been found between the mass flux and the applied electric field. The -potential of the interface C.O.M./liquid mixture has been estimated by using the classial theory of electrophoretic mobility of colloidal particles. The influence of the composition of the mixture on the electrophoretic coefficient has been discussed on the basis of the variation of -potential, viscosity and dielectric constant with the molar fraction of alcohol for binary mixtures and acetone for ternary mixtures. The concentration dependence of the electrophoretic coefficient is found to be linear only in the latter case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号