首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear theory of thermoelasticity without energy dissipation is employed to study thermoelastic interactions in a homogeneous and isotropic unbounded body containing a cylindrical cavity. The interactions are supposed to be due to a constant step in radial stress or temperature applied to the boundary of the acvity, which is maintained at a constant temperature or zero radial stress (as the case may be). By using the Laplace transform technique, it is found that the interactions consist of two coupled waves both of which propagate with a finite speed but with no attenuation. The discontinuities that occurs at the wavefronts are computed. Numerical results applicable to a copper-like material are presented.  相似文献   

2.
    
In this work,a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed.The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions.The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity.The inverse Laplace transforms are computed numerically,and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.  相似文献   

3.
    
We consider an infinitely long cylinder, whose inner and outer surfaces are subjected to known surrounding temperatures and are traction free. The problem is in the context of the fractional order thermoelasticity theory. The medium is assumed to be initially quiescent.  相似文献   

4.
  总被引:3,自引:1,他引:2  
Introduction Thetheoryofgeneralizedthermoelasticitywithonerelaxationtimebasedonamodified Fourier’slawofheatconductionwasdevelopedbyLordandShulman[1].Thistheoryallowsfor theso_calledsecond_soundeffectsinsolids,hencethermaldisturbancespropagatewithfinite wavespeeds. Themathematicalmodelofthegeneralizedthermoelasticitytheoryisofacomplicatednature thathindersthepossibilityofderivingananalyticalsolution.Mostattemptsdealingwiththese equationsarebasedoneithershort_timesolution[2-4]. Modernstructur…  相似文献   

5.
王长达  周洋 《力学季刊》2023,44(3):673-684
在温度急剧变化、短时间极速加热等极端情况下,基于Fourier定律的热流矢量与温度梯度成正比关系的经典热传导理论不能准确描述其物理过程.经典热弹性理论的热传导方程是抛物型的,而广义热弹性理论包含双曲型方程,热将以具有有限传播速度的波动形式传播.本文基于Lord-Shulman广义热弹性理论和修正偶应力弹性理论,得到在偶应力热弹性固体中四种色散波,研究热弹性波的传播和在偶应力固体三明治结构中的反射透射问题,重点研究横波入射时偶应力参数和热弛豫时间对各种热弹性耦合波反射透射系数的影响.  相似文献   

6.
    
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark's numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian's. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system's reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser's thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations; however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.  相似文献   

7.
    
The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals. The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extreme environments, such as micro-scale and ultrafast processes. In this work, the two-step heat transfer model is further extended by considering the Burgers heat conduction model with the second-order heat flux rate for electrons. Then, a novel generalized electron-phonon coupling thermoelasticity is proposed with the Burgers electronic heat transfer. Then, the problem of one-dimensional semi-infinite copper strip subject to a thermal shock at one side is studied by the Burgers two-step (BTS) model. The thermoelastic analytical solutions are systematically derived in the Laplace domain, and the numerical Laplace inversion method is adopted to obtain the transient responses. The new model is compared with the parabolic two-step (PTS) model and the hyperbolic two-step (HTS) model. The results show that in ultrafast heating, the BTS model has the same wave front jump as the HTS model. The present model has the faster wave speed, and predicts the bigger disturbed regions than the HTS model. More deeply, all two-step models also have the faster wave speeds than one-step models. This work may benefit the theoretical modeling of ultrafast heating of metals.  相似文献   

8.
计及材料物性与温度的相关性,基于Clausius不等式和L-S广义热弹性理论,通过对自由能公式的高阶展开,构建了具有变物性特征的广义耦合热弹性动力学模型.推导了各向同性材料表面受热冲击问题的线性化控制方程组,利用热冲击的瞬时特征,借助于Laplace正、逆变换技术及其极限性质,给出了变物性条件下一维热冲击问题的温度场、位移场和应力场的渐近表达式.通过算例,得到了热冲击作用下各物理场的分布规律以及材料物性与温度相关性对于热弹性响应的影响规律.结果表明:材料物性与温度相关性对于各物理场的阶跃位置、阶跃间隔以及阶跃峰值均产生不同程度地影响,相比于位移场和应力场的显著影响,其对温度场的影响效果并不明显.  相似文献   

9.
The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.  相似文献   

10.
The linear theory of thermoelasticity without energy dissipation is employed to study thermoelastic interactions due to a continuous point heat source in a homogeneous and isotropic unbounded solid. The Laplace transform method is employed to solve the problem. Exact expressions, in closed form, for the displacement, temperature and stress fields are obtained. Numerical results for a copper-like material are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
    
The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotropic medium is investigated in the perspective of the three-phase-lag(TPL), dual-phase-lag(DPL), Green-Naghdi-III(GNIII), Lord-Shulman(LS), and classical coupled(CL) theories. The reflection coefficients and energy ratios for all the reflected waves are obtained in a mathematical form. The rotational effects on the reflection characteristics of the 3D waves are discussed under the context of generalized thermoelasticity. Comparative analyses for the reflection coefficients of the waves among these generalized thermoelastic theories are performed. The energy ratios for each of the reflected waves establish the energy conservation law in the reflection phenomena of the plane waves. The highly anisotropic materials along with the rotation may have a significant role in the phenomenon of the reflection behavior of the 3D waves. Numerical computations are performed for the graphical representation of the study.  相似文献   

12.
广义热弹性问题研究进展   总被引:6,自引:0,他引:6       下载免费PDF全文
本文总结了广义热弹性问题最近10年的研究进展, 包括不同类型广义热弹耦合问题的研究、考虑磁!--!电多场耦合的广义电磁热弹耦合问题研究以及计及扩散效应和黏弹性效应的广义热弹性理论的发展、广义热弹性问题基本求解方法等, 通过总结, 使读者对广义热弹性问题的研究现状及发展趋势有较全面的认识, 帮助研究人员进一步开展广义热弹性问题更高层次的研究.   相似文献   

13.
An axisymmetric boundaryvalue problem of thermoelasticity for a compressed spheroid with a concentric spherical cavity is studied by the generalized Fourier method. The problem is reduced to an infinite system of linear algebraic equations with the Fredholm operator under the condition that the boundary surfaces are not crossed. Results of a numerical analysis of stresses in the case of loadfree boundary surfaces in the presence of a temperature field caused by a constant temperature distribution on the boundary surfaces are presented.  相似文献   

14.
计及材料特性与温度的相关性,基于Lord和Shulman(L-S)广义热弹性理论,建立了此类问题的有限元控制方程. 由于材料属性的温度相关性,温度控制方程具有非线性,积分变换求解方法难以采用,因而将有限元方程直接在时间域求解. 利用所建立方法研究了材料特性与温度相关、带有孔洞的无限大体在热冲击和机械冲击作用下的广义热弹性问题. 分析表明,在时间域直接求解材料属性与温度相关的广义热弹性问题是可行的,所得结果具有很高的精度,热的波动性得到充分的展现. 同时发现,热冲击载荷作用时,材料属性与温度的相关性对结构的机械响应影响显著,对温度响应影响很小;机械载荷作用时,材料参数与温度的相关性对所有响应影响都很小. 因此,研究热冲击载荷作用的机械响应时,必须考虑材料属性的温度相关性,而研究温度响应时,无论何种冲击载荷,都可以不考虑材料属性的温度相关性.   相似文献   

15.
    
In this article,we discuss two problems of the semi-conductor physics from the point of view ofthe fluid dynamics.Firstly,we discuss the problem of the p-n junction,and find that the previoustreatment and the previous conclusion of the problem are somewhat erroneous.Secondly,we discussthe coefficient C of the block resistance,and find that the mathematical method of the previoustreatment is erroneous.  相似文献   

16.
计及材料物性与温度的相关性,基于Green-Naghdi能量无耗散广义热弹性理论(G-N Ⅱ理论),对热冲击下具有变物性特征材料的热弹性响应进行了求解分析.借助Laplace正、反变换技术以及Krichhoff变换,在热物性参数随真实温度呈线性规律的前提下,推导了半无限大体受热冲击作用时热弹性响应的解析表达式,通过求解分析,得到了热冲击下热波、热弹性波的传播规律,位移场、温度场以及应力场的分布情况,以及物性随温度相关性对热弹性响应的影响效果.结果表明:当考虑材料物性随温度的变化时,热波、热弹性波的传播以及各物理场的分布均受到不同程度的影响,且物性随温度相关性对热弹性响应的作用效果将受到材料热力耦合特性的影响.  相似文献   

17.
    
The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace transformation, the fundamental equations are expressed in the form of a vector-matrix differential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the thermal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion techniques. The numerical values of the physical quantity are computed for the copper like material. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.  相似文献   

18.
韦杰  吴枝根  鲁文 《力学与实践》2023,45(4):818-826
基于能量守恒方程和L–S广义热弹性理论,借助状态空间技术和Newmark法求解了材料性质沿径向任意梯度分布同时又与温度相关的非均质圆筒非线性耦合广义热弹性问题。通过对材料性质与温度无关和相关功能梯度圆筒的算例分析,给出了在线性和非线性耦合下圆筒内温度和应力沿径向和随时间的变化关系,验证了本文解的正确性和有效性。数值结果表明,考虑材料性质是否与温度相关,能量守恒方程中耦合项是线性还是非线性,得到的温度与应力均存在不同程度的差异。本文解可方便地应用于不同边界条件和初始条件下圆筒的广义热弹性分析。  相似文献   

19.
基于 L-S 广义热弹性理论, 针对实心圆柱体在外表面受均匀热冲击作用下的一维广义热弹性问题进行研究分析. 利用热冲击的瞬时特征, 借助于 Laplace 正、反变换技术及柱函数的渐近性质, 推导了热冲击作用周期内温度场、位移场和应力场的渐近表达式. 通过计算, 得到了热冲击条件下各物理场的分布规律以及延迟效应和耦合效应对热弹性响应的影响规律. 结果表明: 当考虑延迟效应和耦合效应时, 热扰动将以两组速度不同的波的形式向前传播, 延迟效应和耦合效应对各物理场的建立时间, 阶跃间隔和阶跃峰值均产生影响, 且延迟效应和耦合效应均在一定程度上削弱了热冲击的作用效果.   相似文献   

20.
    
In this article, we discuss two problems of the semi-conductor physics from the point of view of the fluid dynamics. Firstly, we discuss the problem of thep-n junction, and find that the previous treatment and the previous conclusion of the problem are somewhat erroneous. Secondly, we discuss the coefficientC of the block resistance, and find that the mathematical method of the previous treatment is erroneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号