首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对磁场环境中轴向运动载电流导电板磁热弹性耦合动力学建模问题进行研究. 考虑几何非线性和热效应条件下, 给出薄板运动的动能、应变能以及外力虚功的表达式.应用哈密顿变分原 理, 推得力、运动、电、磁和热效应相互作用下轴向运动导电板的非线性磁热弹性耦合振动方程.基于麦克斯韦电磁场方程, 考虑相应的电磁本构关系和电磁边界条件, 推得磁场环境中轴向运动载电流导电板满足的电动力学方程和所受电磁力表达式, 并给出焦耳热作用下耦合形式的热传导方程. 算例表明, 磁场等参量对动力学系统分岔特性有明显影响.所得结果可为此类问题的进一步求解和分 析提供理论参考.  相似文献   

2.
给出了磁场、热场和弹性场多场耦合作用下微极广义热弹性固体的一般控制方程.该方 程既包含了磁场、热场和弹性场的耦合作用,又在其广义热传导方程中涵盖了耦合热弹理论 (C-D)及其5类推广(L-S理论,G-L理论,G-N(II,III)理论和C-T理论).运用该微极广义磁热 弹性控制方程,研究了在定常磁场作用下, 具有均匀初始温度的两理想接触微极弹性介质平面分界面上磁热弹性波的反射和折射现象.给出了分别在缺少磁场、热场作用或不同广义热传 导理论下反射或折射热波、纵向位移波、耦合横向和微旋转波与入射纵向位移波的振幅比随 入射角变化的关系曲线.对缺少磁、热和微极性以及热松弛时间时对应的反射、折射系数进 行了对比.结果表明磁、热和微极性以及热松弛时间对振幅比均有不同程度的影 响,与磁、热和微极性一样,热松弛时间对不同类型波的影响能力差别明显,但对同 一类型的反射波和折射波的影响相似.  相似文献   

3.
The paper deals with the thermo-elastic interactions due to distributed periodically varying heat sources in a homogeneous, isotropic, unbounded elastic medium in the context of the theory of thermo-elasticity without energy dissipation. Closed form solutions for displacement, temperature, stress and strain are derived by using Laplace transform on time and then Fourier transform on space. It reveals that the interactions consist of two coupled modified dilatational and thermal waves modified by finite thermal wave speed and thermo-elastic coupling traveling with finite speeds and without attenuation. The results are compared with previous results derived by using other generalized thermo-elasticity theories. Numerical results for a hypothetical material are presented.  相似文献   

4.
The flow of ionized gases under the influence of electromagnetic fields is governed by the coupled system of the compressible flow equations and the Maxwell equations. In this system, coupling of the flow with the electromagnetic field is obtained through nonlinear and stiff source terms, which may cause difficulties with the numerical solution of the coupled system. The discontinuous Galerkin finite element method is used for the numerical solution of this system. For the magnetic field vector, discontinuous Galerkin discretization is performed using a divergence‐free vector base for the magnetic field to preserve zero divergence in the element and retain the implicit constraint of a divergence‐free magnetic field vector down to very low level both globally and locally. To circumvent difficulties resulting from the presence of the stiff source terms, implicit time marching is used for the fully coupled system to avoid wrong wave shapes and propagation speeds that are obtained when the coupling source terms are lagged in time or by using splitting iterative schemes. Numerical solutions for benchmark problems computed on collocated meshes for the flow and electromagnetic field variables with this fully coupled monolithic approach showed good agreement with other numerical solutions and exact results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Based on the generalized variational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo-elasticity of ferromagnetic thin shell-Ⅰ), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.  相似文献   

6.
The problem of finite wave propagation in a nonlinearly thermoviscoelastic thin rod whose viscoelastic properties are temperature dependent is considered. The rod is subjected to mechanical or thermal time-dependent loading. The coupled equations of motion and heat conduction are based on a constitutive theory of nonisothermal nonlinear viscoelasticity which is described by single-integral terms only. This theory is reformulated here for the uniaxial motion of a compressible rubbery material. The solution of the field equations is obtained by a numerical procedure which is developed for the present case and is able to handle successfully shock waves whenever they built up in the nonlinear material.  相似文献   

7.
The thermoelastic problem of laser exposure of metals and dielectrics is studied taking into account the finite speed of propagation of thermal waves and using a numerical finite-difference algorithm. The resulting numerical solution is compared with the analytical one. The problem is solved in coupled and uncoupled formulations. The solutions of the hyperbolic thermoelastic problem are compared with the solutions of the classical problem. Analytical expressions are obtained for the propagation speeds of the thermoelastic wave components. Times are determined at which the difference between the solutions of the hyperbolic and classical thermoelastic problems can be detected experimentally.  相似文献   

8.
基于Lord-Shulman非傅里叶热弹性模型,提出了采用修正的时域间断迦辽金有限元方法(time discontinuousGalerkin finite element method, DGFEM)求解方法. DGFEM对温度场、位移场基本未知向量及其时间导数向量在时域中分别插值;在最终的求解公式中,引入了人工阻尼. 数值结果显示所发展的DGFEM 较好地捕捉了波的间断并消除了热冲击作用下虚假的数值振荡,能够良好地模拟热弹性问题并具有较高的精度.  相似文献   

9.
This paper studies wave propagation in a soft electroactive cylinder with an underlying finite deformation in the presence of an electric biasing field.Based on a recently proposed nonlinear framework for electroelasticity and the associated linear incremental theory,the basic equations governing the axisymmetric wave motion in the cylinder,which is subjected to homogeneous pre-stretches and pre-existing axial electric displacement,are presented when the electroactive material is isotropic and incompressible.Exact wave solution is then derived in terms of(modified) Bessel functions.For a prototype model of nonlinear electroactive material,illustrative numerical results are given.It is shown that the effect of pre-stretch and electric biasing field could be significant on the wave propagation characteristics.  相似文献   

10.
The present paper presents the three-dimensional magneto-thermo-elastic analysis of the functionally graded cylindrical shell immersed in applied thermal and magnetic fields under non-uniform internal pressure. The inhomogeneity of the shell is assumed to vary along the radial direction according to a power law function, whereas Poisson's ratio is supposed to be constant through the thickness. The existing equations in terms of the displacement components, temperature, and magnetic parameters are derived, and then the effective differential quadrature method(DQM) is used to acquire the analytical solution. Based on the DQM, the governing heat differential equations and edge boundary conditions are transformed into algebraic equations, and discretized in the series form. The effects of the gradient index and rapid temperature on the displacement,stress components, temperature, and induced magnetic field are graphically illustrated.The fast convergence of the method is demonstrated and compared with the results obtained by the finite element method(FEM).  相似文献   

11.
The present paper studies the propagation of plane time harmonic waves in an infinite space filled by a thermoelastic material with microtemperatures. It is found that there are seven basic waves traveling with distinct speeds: (a) two transverse elastic waves uncoupled, undamped in time and traveling independently with the speed that is unaffected by the thermal effects; (b) two transverse thermal standing waves decaying exponentially to zero when time tends to infinity and they are unaffected by the elastic deformations; (c) three dilatational waves that are coupled due to the presence of thermal properties of the material. The set of dilatational waves consists of a quasi-elastic longitudinal wave and two quasi-thermal standing waves. The two transverse elastic waves are not subjected to the dispersion, while the other two transverse thermal standing waves and the dilatational waves present the dispersive character. Explicit expressions for all these seven waves are presented. The Rayleigh surface wave propagation problem is addressed and the secular equation is obtained in an explicit form. Numerical computations are performed for a specific model, and the results obtained are depicted graphically.  相似文献   

12.
《力学快报》2020,10(4):286-297
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark's numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian's. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system's reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser's thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations; however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.  相似文献   

13.
直接有限元法求解广义磁热弹二维旋转问题   总被引:1,自引:0,他引:1  
为了验证直接有限元法求解广义磁热弹耦合旋转问题的有效性及准确性,该文基于Lord和Shulman(L-S)广义热弹性理论,采用直接有限元方法,求解了置于磁场中的旋转半无限大体受热冲击作用的动态响应问题.文中给出了L-S型广义磁热弹耦合旋转问题的控制方程,建立了L-S型广义磁热弹旋转问题的虚位移原理,推导得到了相应的有限...  相似文献   

14.
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials(FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier's equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement,strains, and stresses are determined by the exact solution to Navier's equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.  相似文献   

15.
The present study deals with the propagation of time harmonic waves in an infinite thermoelastic medium with microtemperatures within the context of the theory developed by Iesan and Quintanilla (2000). There exist three sets of coupled dilatational waves and a shear wave propagating at distinct speeds. Each set of coupled dilatational waves consists of displacement, micro and macrotemperature fields, while the lone shear wave is no different from that exist in classical elasticity. The reflection phenomenon of these waves from a plane boundary of a thermoelastic half space has been investigated.  相似文献   

16.
We consider the propagation of small disturbances in a paramagnetic conducting fluid in a uniform constant magnetic field. Because of coupling of the mechanical and magnetic effects, coupled magnetoacoustic oscillations of a wave nature develop in a certain (resonant) frequency region. The usual MHD waves and uniform magnetization oscillations occur far from resonance. Dissipative processes are accounted for.The equations of motion for a conducting paramagnetic fluid in which interaction of the hydrodynamic velocity with the magnetization and the magnetic field was taken into account phenomenologically were obtained in [1], One of the consequences of this interaction is the propagation of coupled magnetoelastic waves in the fluid; this phenomenon is examined in the present paper.  相似文献   

17.
In the present paper, dynamic and quasi-static behaviors of magneto-thermo-elastic stresses induced by a transient magnetic field in a conducting solid circular cylinder are investigated. It is assumed that a transient magnetic field which is defined by an arbitrary function of time acts on the surface of the solid cylinder in the direction parallel to its surface. Fundamental equations of plane axisymmetrical electromagnetic, temperature, and elastic fields are formulated. Then, solutions of magnetic field, eddy current, temperature change and both dynamic solutions and quasi-static ones of stresses and deformations are analytically derived in the forms including the arbitrary function. The solutions of stresses are determined to be sums of thermal stress caused by eddy current loss and magnetic stress caused by Lorentz force. For this case that the arbitrary function is given by the smoothed ramp function with sine function, the dynamic and quasi-static behaviors of the stresses are examined by numerical calculations.  相似文献   

18.
Advances in computing as well as measurement instrumentation have recently allowed for the investigation of a wider spectrum of physical phenomena in dynamic failure than previously possible. With increasing demand for specialized lightweight, high strength structures, failure of inhomogeneous solids has been receiving increased attention. Such inhomogeneous solids include structural composites such as bonded and sandwich structures, layered and composite materials as well as functionally graded solids. Many of such solids are composed of brittle constituents possessing substantial mismatch in wave speeds, and are bonded together with weak interfaces, which may serve as sites for catastrophic failure (Rosakis and Ravichandran (2000)).In the present study numerical analysis of macrocrack propagation along a bimaterial interface under dynamic loading processes is presented. A general constitutive model of elasto-viscoplastic damaged polycrystalline solids is developed within the thermodynamic framework of the rate type covariance structure with finite set of the internal state variables. A set of the internal state variables is assumed and interpreted such that the theory developed takes account of the effects as follows: (i) plastic non-normality; (ii) softening generated by microdamage mechanisms; (iii) thermomechanical coupling (thermal plastic softening and thermal expansion); (iv) rate sensitivity.To describe suitably the time and temperature dependent effects observed experimentally during dynamic loading processes the kinetics of microdamage has been modified. The relaxation time is used as a regularization parameter. By assuming that the relaxation time tends to zero, the rate independent elastic–plastic response can be obtained. The identification procedure is developed basing on the experimental observations. The finite difference method for regularized elasto-viscoplastic model is used. The edge-cracked bimaterial specimen is considered. In the initial configuration, the height of the specimen is equal to 30 cm, width is 12.5 cm and the length of the initial crack is equal to 2.5 cm. The length of the boundary over which impact is applied is equal to 5 cm, the rise time is fixed at 0.1 μs and the impact velocity is varied. The impact area is localized symmetrically or asymmetrically to the shorter axis of the specimen (symmetry axis of the cohesive band). Basing on the available data of recent experimental observation Rosakis et al. (1999) that have been carried out for relatively thin specimens both the plane stress and plane strain conditions are considered. The material of the specimen is AISI 4340 steel, while PMMA is the cohesive band, both modelled by thermo-elasto-viscoplastic constitutive equations with effects of isotropic hardening and softening generated by microdamage mechanisms and thermomechanical coupling. Fracture criterion based on the evolution of microdamage is assumed. Both, isothermal and adiabatic processes are considered.Particular attention is focused on the investigation of the interactions and reflections of stress waves and the influence of these waves on the propagation of macrocrack within the interface band. The propagation of the macroscopic crack within the material of the interface band for both symmetrical and asymmetrical impact cases has been investigated. It has been found that macrocrack-tip speeds vary from the shear wave speed to the dilatational wave speed of the material and is higher than the Rayleigh surface wave speed. This result is in accord with the experimental observations performed by Rosakis et al. (1999).  相似文献   

19.
This paper is based on the work of Green & Laws who have given a general thermodynamical theory of rods which is valid for any material. Here, starting with the general non-linear theory of elastic rods, we derive a linear theory allowing for thermal effects. The resulting free energy as a quadratic function of kinematic variables is restricted by certain symmetry conditions. The basic equations then separate into four groups, two for flexure, one for torsion and one for extension of the rod with temperature effects occurring only in the latter group. Wave propagation along an infinite rod is considered. There are two wave speeds for each type of flexure, two for torsion and three for isothermal extension and all wave speeds depend on the wave length.  相似文献   

20.
周期性结构热动力时间-空间多尺度分析   总被引:1,自引:0,他引:1  
张洪武  张盛  毕金英 《力学学报》2006,38(2):226-235
研究一种时间-空间多尺度渐近均匀化分析方法,模拟不同的极端热和动力载荷下微尺度多 相周期性结构中热动力响应问题,并建立一个广义的波动函数场控制方程描述热动力响应. 通过引入一个放大空间尺度和两个缩小时间尺度,在不同时间尺度上获得由空间非均匀性引 起的波动效应和非局部效应. 根据高阶均匀化理论在空间和时间上进行均匀化,获得高阶非 局部函数场波动方程. 并进一步用C0连续修正了高阶非局部函数场波动方程的有限元近 似解,使问题的求解避免了对有限元离散的C1连续性要求. 并与经典的空间均匀化方法 相比较,指出了经典的空间均匀化方法的局限性,进一步以一维非傅立叶热传导和热动力问 题为例,讨论了各种情况下方法的正确性与有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号