首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭文祥  刘伍明 《物理》2016,45(6):370-377
光晶格是一种人造光晶体,它是由反向传播激光束干涉形成的周期性势阱构成的。光晶格的周期、势深等参量可以通过调节激光的强度和频率等来准确控制。作为一个纯净可控的实验平台,光晶格已经逐渐成长为模拟多体系统的最便利的工具之一。文章对光晶格中冷原子进行了简单的介绍,重点阐述了玻色—爱因斯坦凝聚、激光冷却、光晶格和量子相变等内容。  相似文献   

2.
Rubidium Rydberg atoms are laser excited and subsequently trapped in a one-dimensional optical lattice (wavelength 1064 nm). Efficient trapping is achieved by a lattice inversion immediately after laser excitation using an electro-optic technique. The trapping efficiency is probed via analysis of the trap-induced shift of the two-photon microwave transition 50S→51S. The inversion technique allows us to reach a trapping efficiency of 90%. The dependence of the efficiency on the timing of the lattice inversion and on the trap laser power is studied. The dwell time of 50D(5/2) Rydberg atoms in the lattice is analyzed using lattice-induced photoionization.  相似文献   

3.
We demonstrate the controlled coherent transport and splitting of atomic wave packets in spin-dependent optical lattice potentials. Such experiments open intriguing possibilities for quantum state engineering of many body states. After first preparing localized atomic wave functions in an optical lattice through a Mott insulating phase, we place each atom in a superposition of two internal spin states. Then state selective optical potentials are used to split the wave function of a single atom and transport the corresponding wave packets in two opposite directions. Coherence between the wave packets of an atom delocalized over up to seven lattice sites is demonstrated.  相似文献   

4.
We create molecules from fermionic atoms in a three-dimensional optical lattice using a Feshbach resonance. In the limit of low tunneling, the individual wells can be regarded as independent three-dimensional harmonic oscillators. The measured binding energies for varying scattering length agree excellently with the theoretical prediction for two interacting atoms in a harmonic oscillator. We demonstrate that the formation of molecules can be used to measure the occupancy of the lattice and perform thermometry.  相似文献   

5.
The feasibility of using feedback for stabilization of atoms in an off-resonance optical lattice is demonstrated. In the proposed scheme, the collective coordinate of atoms is measured and instantaneously compensated for via a spatial shift of the potential of the optical lattice. An external action that provides for heating of atoms with subsequent decrease in their lifetime in the lattice is simulated by a set of independent reservoirs, each interacting only with one atom. A quantum-mechanical analysis of the problem shows that the use of the feedback within the proposed scheme makes it possible to stabilize the energy of atoms at a level below the equilibrium energy.  相似文献   

6.
We report on the experimental observation of the nonlinear analogue of the optical spin Hall effect under highly nonresonant circularly polarized excitation of an exciton-polariton condensate in a GaAs/AlGaAs microcavity. The circularly polarized polariton condensates propagate over macroscopic distances, while the collective condensate spins coherently precess around an effective magnetic field in the sample plane performing up to four complete revolutions.  相似文献   

7.
We report what we believe to be the first accuracy evaluation of an optical lattice clock based on the S01-->P03 transition of an alkaline earth boson, namely, Sr88 atoms. This transition has been enabled by using a static coupling magnetic field. The clock frequency is determined to be 429228066418009(32)Hz. The isotopic shift between Sr87 and Sr88 is 62188135Hz with fractional uncertainty 5x10(-7). We discuss the necessary conditions to reach a clock accuracy of 10(-17) or less by using this scheme.  相似文献   

8.
An atomic gas subject to a commensurate periodic potential generated by an optical lattice undergoes a superfluid-Mott insulator transition. Confining a strongly interacting gas to one dimension generates an instability where an arbitrary weak potential is sufficient to pin the atoms into the Mott state; here, we derive the corresponding phase diagram. The commensurate pinned state may be detected via its finite excitation gap and the Bragg peaks in the static structure factor.  相似文献   

9.
朱少兵  钱军  王育竹 《中国物理 B》2017,26(4):46702-046702
Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding(orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases.Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist.In the superexchange interaction dominating regime,we find that the time-resolved spin imbalance shows a remarkable modulated oscillation,which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms.Moreover,the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics.These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy.  相似文献   

10.
The conservation of magnetization, or atomic spin angular momentum, is broken for anisotropic dipolar interactions. As a result, the Einstein-de Haas effect, or the transfer of spin to spatial angular momentum, arises because the total angular momentum is conserved. We identify the regime for observing this with two 87Rb atoms in a single well, stimulated by the recent result for a condensate. The two-atom system is found to be more easily observed and confirmed with the addition of a periodically modulated magnetic field. Our result of utilizing a feeble dipolar interaction may find potential applications in precision measurements.  相似文献   

11.
Ratchet effect for cold atoms in an optical lattice   总被引:1,自引:0,他引:1  
The possibility of realizing a directed current for a quantum particle in a flashing asymmetric potential is investigated. It is found that quantum resonances, where the value of the effective Planck constant is equal to an integer or half-integer multiple of pi, give rise to a directed current. The effect should be readily observable in experiments.  相似文献   

12.
In this work, we investigate the system of cold spin-1 atoms in a one dimensional optical lattice in relation with squeezing and entanglement. By using the corresponding Bose-Hubbard Hamiltonian, both superfluid and Mott-insulator phases are studied by using numerical methods in the mean-field approximation. To observe the presence of entanglement, we used a squeezing measure as a criterion for quantum correlations. We further investigate the two interaction regimes, namely ferromagnetic and antiferromagnetic in the case of zero and nonzero but very small angle between the counterpropagating laser beams that form the optical lattice. States in the superfluid phase are calculated analytically by using the perturbation theory.  相似文献   

13.
We show how dissipative dynamics can give rise to pairing for two-component fermions on a lattice. In particular, we construct a parent Liouvillian operator so that a BCS-type state of a given symmetry, e.g., a d-wave state, is reached for arbitrary initial states in the absence of conservative forces. The system-bath couplings describe single-particle, number-conserving and quasilocal processes. The pairing mechanism crucially relies on Fermi statistics. We show how such Liouvillians can be realized via reservoir engineering with cold atoms representing a driven dissipative dynamics.  相似文献   

14.
We consider a simple model of the lossless interaction between a two-level single atom and a standing-wave single-mode laser field which creates a one-dimensional optical lattice. The internal dynamics of the atom is governed by the laser field, which is treated as classical with a large number of photons. The center-of-mass classical atomic motion is governed by the optical potential and the internal atomic degrees of freedom. The resulting Hamilton-Schrö dinger equations of motion are a five-dimensional nonlinear dynamical system with two integrals of motion, and the total atomic energy and the Bloch vector length are conserved during the interaction. In our previous papers, the motion of the atom has been shown to be regular or chaotic (in the sense of exponential sensitivity to small variations of the initial conditions and/or the system’s control parameters) depending on the values of the control parameters, atom-field detuning, and recoil frequency. At the exact atom-field resonance, the exact solutions for both the external and internal atomic degrees of freedom can be derived. The center-of-mass motion does not depend in this case on the internal variables, whereas the Rabi oscillations of the atomic inversion is a frequency-modulated signal with the frequency defined by the atomic position in the optical lattice. We study analytically the correlations between the Rabi oscillations and the center-of-mass motion in two limiting cases of a regular motion out of the resonance: (1) far-detuned atoms and (2) rapidly moving atoms. This paper is concentrated on chaotic atomic motion that may be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that an atom, depending on the value of its total energy, can either oscillate chaotically in a well of the optical potential, or fly ballistically with weak chaotic oscillations of its momentum, or wander in the optical lattice, changing the direction of motion in a chaotic way. In the regime of chaotic wandering, the atomic motion is shown to have fractal properties. We find a useful tool to visualize complicated atomic motion-Poincaré mapping of atomic trajectories in an effective three-dimensional phase space onto planes of atomic internal variables and momentum. The Poincaré mappings are constructed using the translational invariance of the standing laser wave. We find common features with typical nonhyperbolic Hamiltonian systems-chains of resonant islands of different sizes imbedded in a stochastic sea, stochastic layers, bifurcations, and so on. The phenomenon of the atomic trajectories sticking to boundaries of regular islands, which should have a great influence on atomic transport in optical lattices, is found and demonstrated numerically.  相似文献   

15.
We propose an experimental scheme to simulate and observe relativistic Dirac fermions with cold atoms in a hexagonal optical lattice. By controlling the lattice anisotropy, one can realize both massive and massless Dirac fermions and observe the phase transition between them. Through explicit calculations, we show that both the Bragg spectroscopy and the atomic density profile in a trap can be used to demonstrate the Dirac fermions and the associated phase transition.  相似文献   

16.
徐志君  刘夏吟 《物理学报》2011,60(12):120305-120305
陷俘于光晶格中的Mott绝缘体态原子是非相干物质波波源. 这种物质波从光晶格释放后不会出现一阶干涉现象,但是存在二阶干涉(密度关联)效应. 针对这一现象,理论上给出了自由膨胀超冷原子气体的密度关联函数,该函数表现出清晰的干涉峰,其条纹结构与光栅衍射谱类似. 进一步研究表明,密度关联函数的峰值结构与两探测器的相对位置有关,出现了物质波的"亚波长干涉"现象. 关键词: 光晶格 密度关联函数 两粒子干涉  相似文献   

17.
We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.  相似文献   

18.
Ultracold atoms in an optical lattice provide a unique approach to study quantum many-body systems, previously only possible by using condensed-matter experimental systems. This new approach, often called quantum simulation, becomes possible because of the high controllability of the system parameters and the inherent cleanness without lattice defects and impurities. In this article, we review recent developments in this rapidly growing field of ultracold atoms in an optical lattice, with special focus on quantum simulations using our newly created quantum many-body system of two-electron atoms of ytterbium. In addition, we also mention other interesting possibilities offered by this novel experimental platform, such as applications to precision measurements for studying fundamental physics and a Rydberg atom quantum computation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号