首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The tetradentate ligands, 2,2'-(1H-pyrazole-3,5-diyl)bis(4- methylpyridine) (4,4'-Me2dppzH), 2,2'-(1H-pyrazole-3,5-diyl)bis(6-methylpyridine) (6,6'-Me2dppzH), 3,5-di(pyrid-2-yl)pyrazole (dppzH), and dipyridyloxadiazole (dpo) react with either Ru(trpy)Cl3 or trans-Ru(trpy)Cl2(NCCH3), where trpy is 2,2',2'-terpyridine, to form a variety of Ru(II) complexes. Among these are the symmetrical chloro-bridged Ru(II) dimer and the "in" and "out" geometric isomers of the monometallic Ru(II) containing species where "in" and "out" refer to the orientation of the Ru-Cl vector relative to the centroid of the ligand backbone. Thirteen complexes were prepared and painstakingly purified by careful recrystallization and/or exhaustive column chromatography. These complexes were characterized by 1H and 13C NMR, electronic absorption, and infrared spectroscopy. Additionally, [Ru2(tryp)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b(BF4)2), [Ru2(trpy)2(4,4'-Me2dppz)mu-Cl](PF6)2.0.5MeOH (3c), [Ru2(trpy)2(6,6'-Me2dppz)(CH2C(O)CH3)](PF6)2.0.5(CH3)2CO (9b), "in"-[Ru(trpy)(4,4'-Me2dppz)Cl](PF6).(CH3)2CO (1c), and "out"-[Ru(trpy)(dpo)Cl](PF6).(CH3)2CO (2d) were characterized by X-ray crystallography. Several ligand substitution reactions were attempted. For example, [Ru2(trpy)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b) was reacted with hydroxide ion to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-OH](PF6)2 (6b). Complex 6b reacts with benzyl bromide to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-Br](PF6)2 (7b) or with (CH3)3Sil to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-I](PF6)2 (8b). of 6b with acetone forms the methyl enolate complex [Ru2(trpy)2(6,6'-Me2dppz)(CH2COCH3)](PF6)2 (9b) while, analogously to a Cannizarro reaction, the reaction with benzaldehyde forms the bridging benzoate complex [Ru2(trpy)2(6,6'-Me2dppz)(C6H4CO2)](PF6)2 (11b). The bridging azide complex [Ru2(trpy)2(6,6'-Me2dppz)mu-N3](PF6)2 (10b) is formed by reaction of 6b with (CH3)3-SiN3. Additionally, the chloride ligands of the monometallic complexes of "in"-[Ru(trpy)(dpo)Cl](PF6) (1d), "in"-[Ru(trpy)(4,4'-Me2dpo)Cl](PF6)] (1e), and "out"-[Ru(trpy)(dpo)Cl](PF6) (2d) were substituted with water to form their respective aqua complexes, 4d, 4e, and 5d. All of the complexes exhibit broad unsymmetrial absorption bands in the visible portion of the electromagnetic spectrum. The dimetallic complexes 3b and 3c exhibit two, 1e- reversible oxidation waves at +0.72 and +1.15 V, and at +0.64 and +1.13 V, respectively. These complexes were not emissive.  相似文献   

2.
Half sandwich Ru(ii)-[9]aneS3 complexes ([9]aneS3 = 1,4,7-trithiacyclononane) are being studied for their antiproliferative activity. We investigated here the activation kinetics of three such complexes, namely [Ru([9]aneS3)(en)Cl](PF(6)) (1), [Ru([9]aneS3)(bpy)Cl](PF(6)) (2) and [Ru([9]aneS3)(pic)Cl] (3) (en = 1,2-diaminoethane, pic = picolinate), and their interaction with DNA model bases. The aim of the study was to assess how they are affected by the nature and charge of the chelating ligand. The model reactions of 1-3 with the guanine derivatives 9-methylguanine (9MeG), guanosine (Guo), and guanosine 5'-monophosphate (5'-GMP) were studied by NMR spectroscopy. All reactions lead, although with different rates and to different extents, to the formation of monofunctional adducts with the guanine derivatives N7-bonded to the Ru center. Two products, the complexes [Ru([9]aneS3)(en)(9MeG-N7)](PF(6))(2) (4) and [Ru([9]aneS3)(pic)(9MeG-N7)](PF(6)) (10), were structurally characterized also by X-ray crystallography. The structure of 4 is stabilized by strong intramolecular H-bonding between an NH of en and the carbonyl O6 of 9MeG. The kinetics of aquation and anation of complexes 2 and 3, as well as the kinetics and the mechanism of the reaction of complexes 1-3 with the biologically more relevant 5'-GMP ligand were studied by UV-Vis spectroscopy. The rate of the reaction of 1-3 with 5'-GMP depends on the nature of the chelating ligand rather than on the charge of the complex, decreasing in the order 3≈2 > 1. The measured enthalpies and entropies of activation (ΔH(≠) > 0, ΔS(≠) < 0) support an associative mechanism for the substitution process.  相似文献   

3.
[Ru(II)(terpy)(DMSO)Cl(2)] complexes were synthesized as a 5/1 mixture of cis and trans isomers, and their reactivities with CO and with substituted 2,2':6',2' '-terpyridine (terpy) moieties have been investigated. The structure of a trans isomer and its CO adduct have been unambiguously assigned by spectroscopy and X-ray diffraction. The [Ru(terpy)(terpy-Br)](2+) complex prepared either from the cis-[Ru(II)(terpy)(DMSO)Cl(2)] or from the cis-[Ru(II)(terpy-Br)(DMSO)Cl(2)] precursor appeared to be reactive in cross-coupling reactions promoted by low-valent palladium(0) and is an attractive target for the stepwise synthesis of polynuclear complexes bearing vacant coordination sites (terpy-Br for 4'-bromo-2,2':6',2' '-terpyridine). Several bipyridine, phenanthroline, and bipyrimidine complexes were prepared this way and their optical and redox properties determined and discussed.  相似文献   

4.
A series of mixed ligand ruthenium(II) complexes [Ru(pdto)(diimine)](ClO4)2/(PF6)2 1-3 and [Ru(bbdo)(diimine)](ClO4), 4-6, where pdto is 1,8-bis(pyrid-2-yl)-3,6-dithiooctane, bbdo is 1,8-bis(benzimidazol-2-yl)-3,6-dithiooctane and diimine is 1,10-phenanthroline (phen), dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been isolated and characterised by analytical and spectral methods. The complexes [Ru(pdto)(phen)](PF6)2 la, [Ru(pdto)(dpq)(Cl](PF6) 2a, [Ru(bbdo)(phen)](PF6)2 4a and [Ru(bbdo)(dpq)](ClO4)2 5 have been structurally characterized and their coordination geometries around ruthenium(II) are described as distorted octahedral. In la, 4a and 5 the two thioether sulfur and two py/bzim nitrogen atoms of the tetradentate pdto/bbdo ligand are folded around Ru(II) to give predominantly a "cis-alpha" configuration. (I)H NMR spectral data of the complexes support this configuration in solution. In [Ru(pdto)(dpq)Cl](PF6) 2a with a distorted octahedral coordination geometry, one of the two py nitrogens of pdto is not coordinated. The DNA binding constants (Kb: 2, 2.00 +/- 0.02 x 10(4) M(-1), s = 1.0; 3, 3.00 +/- 0.01 x 10(6) M(-1), s = 1.3) determined by absorption spectral titrations of the complexes with CT DNA reveal that 3 interacts with DNA more tightly than 2 through partial intercalation of the extended planar ring of coordinated dppz with the DNA base stack. The DNA binding affinities of the complexes increase with increase in the number of planar aromatic rings in the co-ligand, and on replacing both the py moieties in pdto complexes (1-3) by bzim moieties to give bbdo complexes (4-6). Upon interaction with CT DNA the complexes 1, 2, 5 and 6 show a decrease in anodic current in the cyclic voltammograms. On the other hand, interestingly, 3 and 4 show an increase in anodic current suggesting their involvement in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 6 alters the superhelicity of DNA upon binding with supercoiled pBR322 DNA. The cytotoxicities of the dppz complexes 3 and 6, which avidly bind to DNA, have been examined by screening them against cell lines of different cancer origins. It is noteworthy that 6 exhibits selectivity with higher cytotoxicity against the melanoma cancer cell line (A375) than other cell lines, potency approximately twice that of cisplatin and toxicity to normal cells 3 and 90 times less than cisplatin and adriamycin respectively.  相似文献   

5.
A series of polypyridyl ruthenium complexes of the general formula [Ru(tpy)(bpy')Cl]+ where tpy is 2,2':6',2"-terpyridine and bpy' is 4-carboxy-4'-methyl-2,2'-bipyridine (4-CO2H-4'-Mebpy), a proline derviative (4-CO-Pra-(Boc)(OMe)-4'-Mebpy), or 4-((diethoxyphosphinyl)methyl)-4'-methyl-2,2'-bipyridine (4-CH2PO3Et2-4'-Mebpy) are prepared. For each complex, two isomers exist, and these are separated chromatographically. The structure of the hexafluorophosphate salt of cis-[Ru(tpy)(4-CO2H-4'-Mebpy)Cl]+, cis-1, is determined by X-ray crystallography. The salt crystallizes in the monoclinic space group Cc with a = 12.4778(6) A, b = 12.6086(6) A, c = 20.1215(9) A, beta = 107.08200(1) degrees, Z = 4, R = 0.058, and Rw = 0.072. The structures of the remaining complexes are assigned by 1H NMR comparisons with cis-1. The complexes are potentially important precursors for the incorporation of RuIV=O2+ oxidants into polymers or peptides or for their adsorption onto oxide surfaces. Preliminary electrochemical results for the isomers of [Ru(tpy)(4-CH2PO3H2-4'-Mebpy)(H2O)]2+, 4, adsorbed on ITO (In2O3:Sn) surfaces add support to a recently proposed electron-transfer mechanism involving cross-surface proton-coupled electron transfer.  相似文献   

6.
Compounds [RuII(bipy)(terpy)L](PF6)2 with bipy = 2,2'-bipyridine, terpy = 2,2':6',2"-terpyridine, L = H2O, imidazole (imi), 4-methylimidazole, 2-methylimidazole, benzimidazole, 4,5-diphenylimidazole, indazole, pyrazole, 3-methylpyrazole have been synthesized and characterized by 1H NMR, ESI-MS and UV/Vis (in CH3CN and H2O). For L = H2O, imidazole, 4,5-diphenylimidazole and indazole the X-ray structures of the complexes have been determined with the crystal packing featuring only few intermolecular C-H...pi or pi-pi interactions due to the separating action of the PF6-anions. Complexes with L = imidazole and 4-methylimidazole exhibit a fluorescence emission with a maximum at 662 and 667 nm, respectively (lambdaexc= 475 nm, solvent CH3CN or H2O). The substitution of the aqua ligand in [Ru(bipy)(terpy)(H2O)]2+ in aqueous solution by imidazole to give [Ru(bipy)(terpy)(imi)]2+ is fastest at a pH of 8.5 (as followed by the increase in emission intensity). Coupling of the [Ru(bipy)(terpy)]2+ fragment to cytochrome c(Yeast iso-1) starting from the Ru-aqua complex was successful at 35 degrees C and pH 7.0 after 5 d under argon in the dark. The [Ru(bipy)(terpy)(cyt c)]-product was characterized by UV/Vis, emission and mass spectrometry. The location where the [Ru(bipy)(terpy)] complex was coupled to the protein was identified as His44 (corresponding to His39 in other numbering schemes) using digestion of the Ru-coupled protein by trypsin and analysis of the tryptic peptides by HPLC-high resolution MS.  相似文献   

7.
Two novel ruthenium polypyridine complexes, [Ru(bpy)(2)Cl(BPEB)](PF(6)) and ([Ru(bpy)(2)Cl](2)(BPEB))(PF(6))(2) (BPEB = trans-1,4-bis[2-(4-pyridyl)ethenyl]benzene), were synthesized and their characterization carried out by means of elemental analysis, UV-visible spectroscopy, positive ion electrospray (ESI-MS), and tandem mass (ESI-MS/MS) spectrometry, as well as by NMR spectroscopy and cyclic voltammetry. Cyclic and differential pulse voltammetry for the mononuclear complex showed three set of waves around 1.2 V (Ru(2+/3+)), -1.0 V (BPEB(0/)(-)), and -1.15 (BPEB(-/2-)). This complex exhibited aggregation phenomena in aqueous solution, involving pi-pi stacking of the planar, hydrophobic BPEB ligands. According to NMR measurements and variable-temperature experiments, the addition of beta-cyclodextrin (betaCD) to [Ru(bpy)(2)Cl(BPEB)](+) leads to an inclusion complex, breaking down the aggregated array.  相似文献   

8.
Bark T  Thummel RP 《Inorganic chemistry》2005,44(24):8733-8739
A synthetic protocol involving the Friedl?nder reaction of 8-amino-7-quinolinecarbaldehyde followed by potassium dichromate oxidation was applied to 2,3,4-pentanetrione-3-oxime and 1-(pyrid-2'-yl)propane-1,2-dione-1-oxime to provide the ligands di-(phenathrolin-2-yl)-methanone (1) and phenanthrolin-2-yl-pyrid-2-yl-methanone (8), respectively. Ligand 1 complexed as a planar tetradentate with Pd(II) to form [Pd(1)](BF4)2 and with Ru(II) and two 4-substituted pyridines (4-R-py) to form [Ru(1)(4-R-py)2](PF6)2 where R = CF3, CH3, and Me2N. With [Ru(bpy)2Cl2], the dinuclear complex [(bpy)2Ru(1)Ru(bpy)2](PF6)4 was formed (bpy = 2,2'-bipyridine). Ligand 8 afforded the homoleptic Ru(II) complex [Ru(8)2](PF6)2, as well as the heteroleptic complex [Ru(8)(tpy)](PF6)2 (tpy = 2,2';6,2'-terpyridine). The ligands and complexes were characterized by their NMR and IR spectra, as well as an X-ray structure determination of [Ru(1)(4-CH3-py)2](PF6)2. Electrochemical analysis indicated metal-based oxidation and ligand-based reduction that was consistent with results from electronic absorption spectra. The complexes [Ru(1)(4-R-py)2](PF6)2 were sensitive to the 4-substituent on the axial pyridine: electron donor groups facilitated the oxidation while electron-withdrawing groups impeded it.  相似文献   

9.
We report the synthesis, nucleic acid binding and cytotoxicity of the complexes [Ru(terpy)(Me2bpy)Cl]+, [Ru(terpy)(phen)Cl]+ and dinuclear [{Ru(terpy)Cl}2(??-bbn)]2+ {where Me2bpy = 4,4??-dimethyl-2,2??-bipyridine; phen = 1,10-phenanthroline; and bbn = bis[4(4??-methyl-2,2??-bipyridyl)]-1,n-alkane, with n = 7, 10, 12, 14}. The complexes were isolated from the reaction of the [Ru(terpy)Cl3] precursor with the respective bidentate and di-bidentate bridging ligands. The time-course UV?CVisible spectroscopy of the reaction of the mono- and dinuclear complexes with guanosine 5-monophosphate (GMP) showed the movement of the metal-to-ligand charge transfer (MLCT) band to lower wavelengths, accompanied by a hypochromism effect. The formation of the aqua complex and phosphate-bound intermediates in the reaction were detected by the time-course 1H NMR and 31P NMR experiments, which also demonstrated that the complex bound to the N7 guanine was the major product. The UV?CVisible and 1H NMR studies showed no evidence of the interaction of the complexes with both adenosine 5-monophosphate (AMP) and cytidine 5-monophosphate (CMP). Cytotoxicity studies of these complexes against a murine leukemia L1210 cell line revealed that the dinuclear [{Ru(terpy)Cl}2(??-bbn)]2+ complexes were significantly more cytotoxic than mononuclear [Ru(terpy)(Me2bpy)Cl]+. The [{Ru(terpy)Cl}2(??-bb14)]2+ complex appeared to be the most active (IC50 = 4.2 ??M).  相似文献   

10.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

11.
The synthesis and characterization of alpha-[Ru(azpy)2(NO3)2], 1, are reported (azpy is 2-(phenylazo)pyridine; alpha indicates the isomer in which the coordinating pairs ONO2, N(py), and N(azo) are cis, trans, and cis, respectively). The solid-state structure of 1 has been determined by X-ray crystallography. Crystal data: orthorhombic a = 15.423(5) A, b = 14.034(5) A, c = 10.970(5) A, V = 2374(2) A3, space group P2(1)2(1)2(1) (No. 19), Z = 4, Dcalc = 1.655 g cm-3. The structure refinement converged at R1 = 0.042 and wR2 = 0.118 for 3615 unique reflections and 337 parameters. The octahedral complex shows monodentate coordination of the two nitrate ligands. The Ru-N(azo) bond distances (2.014(4) and 1.960(4) A), slightly shorter than the Ru-N(py) bonds (2.031(4) and 2.059(4) A), agree well with the pi-back-bonding ability of the azo groups. The binding of the DNA-model bases 9-ethylguanine (9egua) and guanosine (guo) to 1 has been studied and compared with previously obtained results for the binding of model bases to the bis(bipyridyl)ruthenium(II) complex. The ligands 9egua and guo appear to form monofunctional adducts, which have been isolated as alpha-[Ru(azpy)2(9egua)Cl]PF6, 2, alpha-[Ru(azpy)2(9egua)(H2O)]-(PF6)2, 3, alpha-[Ru(azpy)2(guo)(H2O)](PF6)2, 4, and alpha-[Ru(azpy)2(guo)Cl]Cl, 5. The orientations of 9egua and guo in these complexes have been determined in detail with the use of 2D NOESY NMR spectroscopy. In 2 and 5, H8 is directly pointed toward the coordinated Cl, whereas, in 3 and 4, H8 is wedged between the pyridine and phenyl rings. The guanine derivatives in the azpy complexes can have more orientations than found for related cis-[Ru(bpy)2Cl2] species. This fluxionality is considered to be important in the binding of the alpha-bis(2-(phenylazo)pyridine)ruthenium(II) complex to DNA. In complex 1, ruthenium is the chiral center and in the binding to guanosine, two diastereoisomers each of adducts 4 and 5 have been clearly identified by NMR spectroscopy.  相似文献   

12.
The complex Re(III)(benzil)(PPh(3))Cl(3) (2) is used to synthesize a variety of Re(III) and Re(II) polypyridyl complexes of the type cis-[Re(III)(L(2))(2)Cl(2)](+), [Re(II)(L(2))(3)](2+), Re(III)(L(3))Cl(3), [Re(III)(L(3))(2)Cl](2+), and [Re(III)(L(4))Cl(2)](+), where L(2) = bpy (3and 6), tbpy (4 and 7), phen (5 and 8); L(3) = terpy (9and 10); L(4) = TMPA (11). The complex cis-[Re(III)(bpy)(2)Cl(2)](+) (3) is a useful synthon in the formation of complexes of the type [Re(bpy)(2)L(x)()](n)()(+) that are six- or seven-coordinate Re(III) complexes (13, 16, and 18) or octahedral Re(II) or Re(I) complexes (12 and 17). The [Re(III)(terpy)(2)Cl](2+) (10) complex can be reduced to form the Re(I) complex, [Re(I)(terpy)(2)](+) (21) and then electrochemically reoxidized to form new complexes of the type [Re(III)(terpy)(2)L](n)()(+). Similar behavior is observed for the [Re(II)(bpy)(3)](2+) (6) complex where [Re(III)(bpy)(3)((t)BuNC)](3+) (20) and [Re(I)(bpy)(3)](+) (19) may be formed. The electrochemistry of these complexes is discussed in relation to their reactivity and the observed pi-acidity of the polypyridyl ligands. In addition, X-ray crystal structures for cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3) and [Re(I)(bpy)(3)]PF(6) (19) are reported. cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3, ReC(20)H(16)N(4)Cl(2)F(6)P) crystallizes in the monoclinic space group C2/c with Z = 4 and lattice parameters a = 15.043(5) ?, b = 13.261(4) ?, c = 12.440(4) ?, and beta = 108.86(2) degrees at -100 degrees C. [Re(I)(bpy)(3)]PF(6) (19, ReC(30)H(24)N(6)F(6)P) crystallizes in the rhombohedral space group R&thremacr;c(h) (No. 167) with Z = 12 and lattice parameters a = 13.793(3) ? and c = 51.44(3) ? at -100 degrees C.  相似文献   

13.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

14.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

15.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

16.
A tripodal tris(urea) ligand with 2,2'-bipyridyl (bpy) substituents (L) has been designed and synthesized, which coordinates with three equivalents of Ru(bpy)(2)Cl(2)·2H(2)O, followed by treatment with NH(4)PF(6), to afford the anion receptor [(bpy)(6)Ru(3)L](PF(6))(6) (1). The anion-binding behavior of the ligand L and the Ru(II)-bpy functionalized receptor 1 toward different anions was investigated by (1)H NMR (for L and 1), fluorescence, and UV-vis spectroscopy (for 1). Both compounds showed selective recognition of SO(4)(2-) or H(2)PO(4)(-) ions in the 1:1 binding mode in the NMR studies. The Ru(II) complex 1 displayed the metal-to-ligand charge transfer emission at 600 nm, which was quenched on addition of the sulfate and dihydrogen phosphate ions. Quantitative fluorescence titration experiments were carried out and the stability constants (log K) of the complex 1 with SO(4)(2-) and H(2)PO(4)(-) ions were obtained to be 4.73 and 4.69 M(-1) (1:1 binding mode), respectively.  相似文献   

17.
Thermolysis of solid [Ru(d(t)bpe)(CO)2Cl2](2, d(t)bpe =(t)Bu2PCH2CH2P(t)Bu2) under vacuum affords the five-coordinate complex [Ru(d(t)bpe)(CO)Cl2] (4), which was shown by X-ray crystallography to contain a weak remote agostic interaction. In solution, 4 can be readily trapped by CO, CH3CN or water to give [Ru(d(t)bpe)(CO)(L)Cl2](L = CO, 2; L = CH3CN, 6; L = H2O, 7). Reaction of 4 with AgOTf/H2O yields the tris-aqua complex [Ru(d(t)bpe)(CO)(H2O)3](OTf)2 (8), which has been structurally characterised and probed in solution by pulsed-gradient spin echo (PGSE) NMR spectroscopy. The water ligands in 8 are labile and easily substituted to give [Ru(d(t)bpe)(CO)(NCCH3)3](OTf)2 (10) and [Ru(d(t)bpe)(CO)(DMSO)3](OTf)2 (11). In the presence of CO, the tris-aqua complex undergoes water-gas shift chemistry with formation of the cationic hydride species [Ru(d(t)bpe)(CO)3H](OTf) (12) and CO2. X-Ray crystal structures of complexes 2, 4, 6, 8 and 11-12 are reported along with those for [{Ru(d(t)bpe)(CO)}2(mu-Cl)2(mu-OTf)](OTf) (3), [{Ru(d(t)bpe)(CO)}2(mu-Cl)3][Ru(d(t)bpe)(CO)Cl3](5) and [Ru(d(t)bpe)(CO)(H2O)2(OTf)](OTf)(9).  相似文献   

18.
The synthesis, characterization and DNA binding properties of the complex [Ru(terpy)(4,4'-(COLysCONH(2))(2)bpy)Cl](3+) (1) have been studied. Complex (1) hydrolyzes to (2) with a calculated rate constant K(h) = 2.35 ± 0.08 × 10(-4) s(-1) and binds coordinatively to ct-DNA, with a saturation r-value at about 0.1. Stabilization of the ct-DNA helix at low electrolyte (NaClO(4)) concentration (10 mM) and destabilization at higher electrolyte concentrations (50-200 mM) was observed. Circular dichroism studies indicate that the hydrolyzed complex binds to DNA, increasing the unwinding of the DNA helix with an unwinding angle calculated as Φ = 12 ± 2°. The positive LD signal observed at 350 nm indicates some kind of specificity in complex orientation towards the global DNA axis. Complex (2) binds specifically to G4 on the central part of the oligonucleotide duplexes d(CGCGCG)(2) and d(GTCGAC)(2), as evidenced by NMR spectroscopy. Both lysine moieties were found to interact most likely electrostatically with the DNA phosphates, assisting the coordinative binding and increasing the DNA affinity of the complex. Photoinduced DNA cleavage by (2), upon UVA irradiation was observed, but despite its relative high DNA affinity, it was incomplete (~12%).  相似文献   

19.
The synthesis and characterisation of [Ru(bipy)(2)(L1)](2+) and the homodinuclear complexes [M(bipy)(2)(L1)M(bipy)(2)](4+)(where M = Ru or Os), employing the ditopic ligand, 1,4-phenylene-bis(1-pyridin-2-ylimidazo[1,5-a]pyridine)(L1), are reported. The complexes are identified by elemental analysis, UV/Vis, emission, resonance Raman, transient resonance Raman and (1)H NMR spectroscopy, mass spectrometry and electrochemistry. The X-ray structure of the complex [Ru(bipy)(2)(L1)(bipy)(2)Ru](PF(6))(4) is also reported. DFT calculations, carried out to model the electronic properties of the compounds, are in good agreement with experiment. Minimal communication between the metal centres is observed. The low level of ground state electronic interaction is rationalized in terms of the poor ability of the phenyl spacer in facilitating superexchange interactions. Using the electronic and electrochemical data a detailed picture of the electronic properties of the RuRu compound is presented.  相似文献   

20.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号