首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用固相微萃取-气相色谱-质谱法测定饮用水源中53种挥发性有机污染物的含量。优化的试验条件如下:1萃取纤维为DVB/CAR/PDMS;2萃取温度为25℃;3顶空体积为9mL;4萃取时间为10min;5解吸温度为200℃;6解吸时间为3min。在气相色谱分离中用VF-624MS柱为固定相,在质谱分析中采用全扫描模式。53种挥发性有机污染物在一定的质量浓度范围内与其峰面积呈线性关系,方法的检出限(3S/N)在0.001~0.130μg·L-1之间。方法用于实际水样的分析,加标回收率在75.9%~107%之间,测定值的相对标准偏差(n=5)在0.5%~18%之间。  相似文献   

2.
提出了顶空固相微萃取-气相色谱法测定水中四乙基铅含量的方法。为使固相微萃取达到更高的效率,选用聚二甲基硅氧烷填料(PDMS)作为微萃取的涂层,萃取温度及时间为60℃和30min。用DB-5色谱柱分离,用电子捕获检测器检测。四乙基铅的质量浓度在0.05~20.0μg·L-1范围内与峰面积呈线性关系,方法的检出限(3S/N)为0.02μg·L-1。以水样为基体,在3种浓度水平下进行加标回收试验,回收率在87.0%~90.1%之间,测定值的相对标准偏差(n=7)在3.7%~4.2%之间。  相似文献   

3.
提出了顶空固相微萃取-气相色谱法测定卷烟包装材料中常用溶剂的方法。为使固相微萃取达到更高的效率,选用75μm CAR/PDMS的固相微萃取头,萃取温度及时间为100℃和40min,解吸温度及时间为200℃和10min。用DB-1石英毛细管色谱柱分离,火焰离子化检测器检测。方法的加标回收率在79%~92%之间,相对标准偏...  相似文献   

4.
采用顶空固相微萃取-气相色谱-质谱法对饮用水源水中1,3,5-三氯苯进行了测定。以1,2-二氯苯-d4为内标,用PDMS萃取头顶空萃取20min,萃取头于气相色谱进样口解析5min。采用DB-624色谱柱在程序升温条件下进行分离,质谱分析中采用电子轰击离子源(230℃,70eV)及选择离子监测模式测定。结果表明:1,3,5-三氯苯在0.100~2.50μg.L-1范围内呈线性,检出限(3S/N)为0.019μg.L-1。方法用于河流及水库水中的1,3,5-三氯苯的测定,加标回收率在91.5%~126.0%之间。  相似文献   

5.
提出了顶空固相微萃取-气相色谱-质谱法测定食用植物油中35种挥发性有机物(VOC′s)含量的方法。为使固相微萃取达到更高的效率,选用75μm碳分子筛-聚二甲基硅氧烷纤维作为微萃取的涂层,萃取温度及时间为90℃和30 min。用DB-5MS毛细管色谱柱分离,电子轰击离子源全扫描监测模式检测。35种VOC′s在一定的质量浓度范围内与其峰面积呈线性关系,方法的检出限(3S/N)在0.03~6.84μg·L-1之间。在3个添加水平上做回收试验,加标回收率在91.0%~108.3%之间,相对标准偏差(n=5)小于10%。  相似文献   

6.
固相微萃取-气相色谱法测定水中有机磷农药   总被引:1,自引:0,他引:1  
提出了固相微萃取样品-气相色谱法测定水中6种有机磷农药残留量的方法。为使固相微萃取达到更高的效率,选择65μm的聚二甲基硅氧烷/二乙烯苯(PDMS/DVB)萃取头,萃取温度及时间为80℃和20 min,在10 mL试样中加入氯化钠1.5 g作为盐析剂。用HP-5毛细管色谱柱分离,电子捕获检测器检测。6种有机磷农药的质量浓度均在1.0~50.0μg·L-1范围内与其峰面积呈线性关系,方法的检出限(3S/N)在0.026~0.064μg·L-1之间。方法用于水样分析,测定值的相对标准偏差(n=6)在3.0~5.6%之间,加标回收率在86.2%~115.7%之间。  相似文献   

7.
建立了顶空固相微萃取(HS-SPME)/气相色谱-质谱(GC-MS)同时测定液态化妆品中8种邻苯二甲酸酯类增塑剂(PAEs)的分析方法,并对萃取涂层、萃取温度、搅拌速率、盐浓度等参数进行了优化。最终采用65μm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)固相微萃取纤维头,调节待萃取液盐浓度为360 g.L-1,在搅拌速率600 r/min及萃取温度90℃条件下萃取60 min,在250℃进样口解吸4 min后供GC-MS分析。结果表明,该方法对除邻苯二甲酸二苯酯(DPhP)外的7种目标化合物的线性范围为10~2 000μg.kg-1,检出限为0.7~13.6μg.kg-1,回收率为83%~97%,相对标准偏差(RSD)为2.5%~10.0%;由于DPhP在萃取涂层上的保留较弱,其回收率为70%,检出限为75μg.kg-1,RSD为13.9%。该方法能很好地富集基体中的目标化合物,满足液态化妆品中多种PAEs的分析要求。  相似文献   

8.
建立了一种以SBSE萃取与热解吸-气相色谱-火焰光度法联用技术为基础的测定水中倍半芥子气的方法。对比了SBSE和固相微萃取(SPME)对水中的倍半芥子气的萃取回收率,实验结果表明,SBSE对倍半芥子气的萃取率在22.47%~22.60%之间,SPME对倍半芥子气的萃取率为0.4%。研究了萃取时间、解吸附时间、样品溶液pH值、萃取温度对萃取回收率的影响,选择萃取时间为20min、一级解吸时间为10min、二级解吸时间为4min、样品溶液pH值为7.0、萃取温度为25℃。检测倍半芥子气的线性范围为0.462~23.1μg/L,最低检出限为0.0924μg/L(S/N=3)。该方法已成功应用于河水的检测。  相似文献   

9.
应用顶空固相微萃取-气相色谱-质谱法测定蔬菜及水果中15种农药的残留量。样品用顶空-固相微萃取进行前处理。经优化的试验条件:1采用100μm聚二甲基硅氧烷萃取头;2离子浓度:样品匀浆液中含(w)30%氯化钠;3萃取温度为70℃±1℃;4萃取时间为30min。在气相色谱分离中用HP-5MS色谱柱,在质谱分析中采用全扫描和选择离子监测模式。15种农药的质量浓度均在0.05~1.0mg·L-1范围内与其峰面积呈线性关系,方法的检出限(3S/N)在0.02~0.10μg·kg-1之间。以2种果品作基体,在0.05,0.2,0.5mg·kg-1 3个浓度水平进行加标回收试验,测得回收率在71.0%~96.0%之间,测定值的相对标准偏差(n=5)在0.5%~9.8%之间。  相似文献   

10.
取磨碎的软木塞样品0.500 0g,用水超声提取30min,取提取液9mL置于萃取瓶中,加入1.8g Na2SO4,于55℃进行固相微萃取35min后,于气相色谱仪进样口解吸7min,采用气相色谱-质谱法测定其中愈创木酚的含量。结果表明:愈创木酚在25.00~2 000μg·L-1内与其峰面积呈线性关系,检出限(3S/N)为0.022μg·L-1,按标准加入法进行回收试验,回收率为69.8%~115%,测定值的相对标准偏差(n=6)为6.3%~13%。  相似文献   

11.
固相微萃取-气相色谱法测定鱼肉中五氯酚   总被引:1,自引:0,他引:1  
经匀浆的鱼肉样品置于20 mL顶空瓶中,加入氯化钠3.0 g,水1 mL及pH 2.0硫酸溶液9 mL,于40℃超声萃取30 min。将顶空瓶放入带固相微萃取装置的Combi PAL全自动进样器中,于90℃温度下加热20 min后,用85μm聚丙烯酸酯萃取头固相微萃取10 min,于280℃热解3 min,用HP-5毛细管柱分离后,用气相色谱法(电子捕获检测器)测定五氯酚的含量。五氯酚的线性范围在0.05~100μg.L-1之间,方法的检出限(3S/N)为0.02μg.L-1。在3个浓度水平(1.0,5.0,50.0μg.kg-1)上对方法的回收率进行试验,测得回收率在81.2%~89.4%之间,测定值的相对标准偏差(n=6)在4.2%~7.1%之间。  相似文献   

12.
建立了采用75μm碳分子筛/聚二甲基硅氧烷(CAR-PDMS)纤维的固相微萃取-气相色谱/同位素质谱联用方法测定水中挥发性有机污染物碳同位素。使用浸入式固相微萃取和顶空固相微萃取方法进行实验确定在低浓度条件下最佳δ13C测试方法。通过使用顶空固相微萃取前处理技术进行单体同位素分析分析灵敏度更高,应用CSIA技术对1,2-二氯乙烯,三氯乙烯,四氯化碳进行单体同位素分析,方法的检出限为70μg/L,与样本的标准偏差小于0.3‰。该法适用于水体中微量挥发性有机污染物的同位素组成测定。  相似文献   

13.
采用固相微萃取-气相色谱质谱法联用测定了水体中痕量多环麝香类化合物。对固相微萃取条件和解析条件进行了优化,确定了微萃取条件为:选用65μmPDMS-DVB萃取头、顶空萃取模式(HS),在800 r/min,60℃条件下,萃取45 min;萃取过程中保持pH 7并且不加入NaCl;解析条件为:解析时间为3 min,插入GC深度为4 cm,进样口温度为250℃。方法的检测限为0.29~0.37 ng/L,线性范围5~1000ng/L,相对标准偏差1.5%~2.2%。对实际污水厂不同类型的水样使用优化后的实验条件进行了验证试验,目标化合物的回收率在82.5%~92.8%之间,表明优化后的试验条件适用于实际水体中痕量多环麝香类化合物的分析测定。  相似文献   

14.
提出了顶空固相微萃取-气相色谱-串联质谱法测定香精香料中黄樟素含量的方法。为使固相微萃取达到更高的效率,选用65μm聚二甲基硅氧烷/二乙烯苯作为微萃取的涂层,萃取温度及时间为(25±5)℃和30 min。用DB-5MS毛细管色谱柱分离,电子轰击离子源串联质谱模式检测。选定黄樟素的母离子和子离子分别为m/z 162和m/z 131,内标丙酸苯乙酯的定量离子为m/z 104。黄樟素的线性范围为20~1 000 ng·g-1,方法的检出限(3S/N)为2.2 ng·g-1。在3个浓度水平上做回收试验,加标回收率在71.1%~114.0%之间,相对标准偏差(n=5)在3.4%~16%之间。  相似文献   

15.
采用顶空固相微萃取-气相色谱法测定水中三乙基硫代磷酸酯、阿特拉津、甲基对硫磷、对硫磷和脱叶磷等5种农药残留量。优化的试验条件如下:1聚丙烯酸酯萃取纤维头;2萃取温度为80℃;3萃取时间为40min;4解吸时间为5min。用DB-35MS色谱柱(30m×0.32mm,0.25μm)分离,氮磷检测器检测。5种农药在一定的质量浓度范围内与其峰面积呈线性关系,方法的检出限(3S/N)在0.05~1.0μg·L-1之间。方法用于水库水样分析,加标回收率在37.0%~107%之间,测定值的相对标准偏差(n=5)在1.6%~25.0%之间。  相似文献   

16.
建立了一种应用顶空固相微萃取(HS-SPME)气相色谱质谱(GC-MS)联用分析测定茶叶中香叶醇(Geraniol)的方法。通过考察萃取头型号、茶水比、萃取温度、萃取时间、解吸附温度和解吸附时间等影响因素,确定最佳HS-SPME条件为:DVB/CAR/PDMS型号萃取头、茶水比1:6、萃取温度60℃、萃取时间60 min;气相色谱最佳解吸附条件为:进样口温度240℃、解吸附时间3 min。在优化条件下茶叶样品中的香叶醇得到较好的提取,GC-MS检测线性范围为0.08~16.50μg/g,检出限(S/N≥3)为9.42×10-3μg/g,空白基质加标回收率为89.8%~105.9%。在对24种茶样进行检测后,香叶醇含量范围为0.13~11.85μg/g,相对标准偏差为1.8%~9.7%。方法能满足茶叶样品中香叶醇分析测定的需要。  相似文献   

17.
采用快速阳极氧化不锈钢丝作为固相微萃取纤维-高效液相色谱法测定水中苯并[a]芘的含量。结果表明:阳极氧化不锈钢丝制作简单、稳定性好、寿命长。水样用固相微萃取头在30℃和1 000r·min-1搅拌速率下萃取40min,萃取头解吸3min。以C18反相色谱柱为分离柱,以甲醇-水(95+5)混合液为流动相进行色谱分离。在检测波长254nm处进行测定。苯并[a]芘的质量浓度在0.1~100μg·L-1范围内与其峰面积呈线性关系,检出限(3S/N)为10.92ng·L-1。在10,50μg·L-1等2个浓度水平进行加标回收试验,回收率在97.9%~110%之间。  相似文献   

18.
利用低温冷冻条件下农药在水相和有机相之间达到新的传质平衡,建立了低温富集液液萃取-气相色谱-三重四极杆串联质谱法同时测定水样中15种有机磷、有机氯及菊酯类农药的方法。通过对样品前处理中的溶剂选择、冷冻温度及冷冻时间的优化,最终确定的样品前处理条件为:萃取溶剂为甲苯2.0 mL;冷冻温度-40℃;冷冻时间1h。15种农药的检出限(3S/N)在0.005~0.02μg·L-1范围,测定下限(10S/N)为0.02~0.07μg·L-1。方法用于水样中农药的分析,加标回收率在78.8%~124%之间,测定值的相对标准偏差(n=5)在0.9%~9.1%之间。  相似文献   

19.
采用固相萃取-衍生化-气相色谱-质谱法同时测定水中4种类固醇类雌激素雌酮(E1)、17β-雌二醇(E2)、17α-乙炔基雌二醇(EE2)、雌三醇(E3)。样品经Oasis HLB固相萃取柱,以丙酮为溶剂进行洗脱后,采用吡啶、N-甲基-N-三甲基硅基三氟乙酰胺于40℃衍生化20min后,采用气相色谱-质谱仪分析。E1、E2、EE2和E3的线性范围分别为5.00~500μg·L-1和10.0~500μg·L-1,4种类固醇类雌激素的检出限(3S/N)在1.5~3.0μg·L-1之间,测定下限(10S/N)在5.0~10μg·L-1之间;方法用于实际水样的分析,加标回收率在86.8%~93.8%之间,测定值的相对标准偏差(n=7)在7.1%~11%之间。  相似文献   

20.
提出了一种以固相微萃取与气相色谱-氢火焰联用技术为基础的测定食品包装材料中15种常用有机溶剂(苯类、醇类、酮类、酯类等)的方法。选择聚二甲亚砜作为固相微萃取的萃取相,采用DB-624毛细管色谱柱进行分离。在优化的试验条件下,15种有机残留溶剂在20min内能很好地分离,15种溶剂的测定下限(10S/N)为0.08~0.69μg.dm-2。加标回收率为60.0%~115.0%,相对标准偏差(n=5)为2.17%~8.34%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号