首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
前已报道四氟乙烯四聚体(全氟-3,4-甲基己烯-3)(1)、五聚体(全氟-3,4-二甲基-4-乙基己烯-2)(2)和脂肪烷氧以及脂肪胺的亲核反应.本文报道化合物1,2和芳香胺如苯胺、β-萘胺的反应.由于烯烃1、2双键处于分子中间,因而当亲核试剂进攻时,双键容易发生重排,生成的末端基烯烃更具反应性,故导致一取代、二取代、三取代以及环化降解等复杂产物.  相似文献   

2.
The spreading of a liquid drop over liquid subphase can be driven by change in interfacial tension mediated through a surfactant, volatile solvent or photoinduced reaction. In contrast to the spreading dynamics of a liquid drop, a liquid crystal drop with anisotropic structure can lead to interesting behaviour due to its viscoelasticity and anchoring at the interfaces. Recently, we have reported studies on unusual spreading and retraction dynamics of a smectic domain doped with a fluorescent dye in the collapsed state of a Langmuir monolayer. Under epifluorescence microscope, during excitation, a stack of layers of the dye-doped smectic domain gets sheared causing the domain to spread asymmetrically. Further, due to line tension, the domain transforms into a circular shape. We also find the domain size to be about twice that of the initial size. Interestingly, in the absence of excitation, the domain retracts to a smaller area. During retraction of the domain, successive generation of edge dislocation loops arising from a nucleus results in an increase in the domain thickness. The dynamics of spreading and retraction of the domain can be understood by invoking changes in the spreading coefficient due to photoinduced modification of the interfacial tension.  相似文献   

3.
In this paper, we present a detailed mechanism for the complete decomposition of NH3 to NHx(a) (x = 0-2). Our calculations show that the initial decomposition of NH3 to NH2(a) and H(a) is facile, with a transition-state energy 7.4 kcal mol-1 below the vacuum level. Further decomposition to N(a) or recombination-desorption to NH3(g) is hindered by a large barrier of approximately 46 kcal mol-1. There are two plausible NH2 decomposition pathways: 1) NH2(a) insertion into the surface Si-Si dimer bond, and 2) NH2(a) insertion into the Si-Si backbond. We find that pathway (1) leads to the formation of a surface Si = N unit, similar to a terminal Si = Nt pair in silicon nitride, Si3N4, while pathway (2) leads to the formation of a near-planar, subsurface Si3N unit, in analogy to a central nitrogen atom (Nc) bounded to three silicon atoms in the Si3N4 environment. Based on these results, a plausible microscopic mechanism for the nitridation of the Si(100)-(2 x 1) surface by NH3 is proposed.  相似文献   

4.
Continuing the development of the FFLUX, a multipolar polarizable force field driven by machine learning, we present a modern approach to atom‐typing and building transferable models for predicting atomic properties in proteins. Amino acid atomic charges in a peptide chain respond to the substitution of a neighboring residue and this response can be categorized in a manner similar to atom‐typing. Using a machine learning method called kriging, we are able to build predictive models for an atom that is defined, not only by its local environment, but also by its neighboring residues, for a minimal additional computational cost. We found that prediction errors were up to 11 times lower when using a model specific to the correct group of neighboring residues, with a mean prediction of ∼0.0015 au. This finding suggests that atoms in a force field should be defined by more than just their immediate atomic neighbors. When comparing an atom in a single alanine to an analogous atom in a deca‐alanine helix, the mean difference in charge is 0.026 au. Meanwhile, the same difference between a trialanine and a deca‐alanine helix is only 0.012 au. When compared to deca‐alanine models, the transferable models are up to 20 times faster to train, and require significantly less ab initio calculation, providing a practical route to modeling large biological systems. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

5.
6.
Compared with a standard gradient system, the new gradient system which we developed has a major advantage because it permits a wide range of acetonitrile content, e.g. more than the critical threshold, in the polypeptide solution and allows the quantitative analysis of the polypeptide with satisfactory analytical precision. Additionally, this new gradient system allows the enhancement of the sensitivity of the polypeptide analysis proportionate to the increased volume of solution loaded with the same levels of precision. In contrast, when using a standard gradient system it is difficult to analyze a polypeptide quantitatively with good precision due to either adsorption to various materials or to irregular change in the ratio between a retained and a passed peak of the polypeptide. Additionally, the appearance of a passed peak results in a loss in the sensitivity of the polypeptide analysis, although no adsorption of a polypeptide to various materials occurs in a solution with acetonitrile content more than the critical threshold. Consequently, the new gradient system is effective for the simultaneous and quantitative analysis of different polypeptides with good precision and without any loss of sensitivity due to either adsorption to various materials or the appearance of a passed peak.  相似文献   

7.
Hysteresis of wetting, like the Coulombic friction at solid/solid interface, impedes the motion of a liquid drop on a surface when subjected to an external field. Here, we present a counterintuitive example, where some amount of hysteresis enables a drop to move on a surface when it is subjected to a periodic but asymmetric vibration. Experiments show that a surface either with a negligible or high hysteresis is not conducive to any drop motion. Some finite hysteresis of contact angle is needed to break the periodic symmetry of the forcing function for the drift to occur. These experimental results are consistent with simulations, in which a drop is approximated as a linear harmonic oscillator. The experiment also sheds light on the effect of the drop size on flow reversal, where drops of different sizes move in opposite directions due to the difference in the phase of the oscillation of their center of mass.  相似文献   

8.
"Chemical adaptor systems" are molecules used to link different functionalities, based on unique reactivity that allows controlled fragmentation. Two different mechanistic reactivities were used to prepare chemical adaptor systems. The first is based on a spontaneous intra-cyclization reaction to form a stable ring molecule. Cleavage of the trigger generates a free nucleophile, for example, an amine group, which undergoes intra-cyclization to release the target molecule from the handle part (e.g., a targeting antibody or a solid support for synthesis). The second applied reactivity is an elimination reaction, which is usually based on a quinone-methide-type rearrangement. Similarly, cleavage of the trigger generates a free phenol functionality, which can undergo a self-elimination reaction through a quinone-methide rearrangement to release the target molecule. The adaptor molecules have been applied in the field of drug delivery to release a drug from a targeting device and in the field of solid-phase synthesis to release a synthetic molecule from the solid support. A chemical adaptor molecule has also been used as a building unit to construct dendrimers with a triggered fragmentation.  相似文献   

9.
Hydrazide group has a potential of immobilizing an antibody on a sensor surface in a way that ensures an optimal orientation and efficiency of the antibody. However, a multi-step chemical process, required for the preparation of a hydrazide group, is a barrier to its extensive application. This paper describes a new method to introduce a hydrazide group to a sensor surface by a one-step process using dodecanoic hydrazide. The method is based on an ability of the dodecanoic hydrazide to be incorporated into a hybrid bilayer membrane (HBM) layer, thereby presenting its hydrazide group to the surface. Liposome containing dodecanoic hydrazide was added to a hydrophobic self-assembled monolayer surface of a quartz crystal microbalance for the formation of a HBM. Then, the hydrazide group, presented in the surface of the HBM layer, was utilized for the oriented immobilization of an antibody via its carbohydrate moiety which was partially oxidized prior to the conjugation reaction. Activity and stable status of the incorporated dodecanoic hydrazide was revealed by the efficiency and reproducibility of the resulting immunosensor chip.  相似文献   

10.
The goal of combinatorial chemistry is to simultaneously synthesize sets of compounds possessing properties that are then distinguished through screening. As the size of a compound set increases, data analysis becomes more challenging. Analysis of Variance (ANOVA) is an accepted statistical method that offers a straightforward solution to this problem. Two steps encountered by combinatorial scientists appear well suited to ANOVA: the prediction of synthetic outcomes (purity and yield) of set members and the analysis of screening data to identify combinations of reagent inputs that result in molecules with a desired property. To illustrate, a subset of a combinatorial array, referred to as a reaction rehearsal set, is evaluated to create a model predictive of the individual synthetic outcomes of the full matrix. In a second exercise, the biochemical screening data obtained from a combinatorial library is analyzed to identify reagent interactions that result in molecules possessing the sought activity.  相似文献   

11.
Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.  相似文献   

12.
Tsai SL  Hong JL  Chen MK  Jang LS 《Electrophoresis》2011,32(11):1337-1347
This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet.  相似文献   

13.
Even in a finite-size system, the vibronic interaction acts as the attractive force to bind a pair of electrons. For small-size systems, the electron repulsion overwhelms the vibronic attraction. As the size of the system becomes large, the electronic repulsion diminishes to zero in proportion to the volume of the system, whereas the vibronic attraction (1) grows to infinity for a one-dimensional system, (2) converges to a finite value for a two-dimensional system, and (3) diminishes to zero for a three-dimensional system. Even for a three-dimensional system, the vibronic attraction diminishes much slower than does the electronic repulsion. This brings about a concept of the critical size for an any-dimensional system, over which size the vibronic attraction overwhelms the electronic repulsion, thereby creating purely attractive interaction for a pair of electrons, which may lead to superconductivity.  相似文献   

14.
15.
《Liquid crystals》1999,26(4):501-515
Starting from simple geometric properties of parallel surfaces, it is suggested that bilayers, and also monolayers, present two spontaneous principal curvatures gamma and gamma , so that a narrow disc of freely deformable bilayer might adopt either a 'saddle' shape, or a 'hat' shape, or a cylindrical shape. Besides the usually considered spontaneous splay c0 = gamma + gamma , there is also a spontaneous gaussian curvature g0= gammagamma , with noticeable effects in strongly curved bilayers. An excess of area of the median hydrophobic level with respect to the mean area occupied by the two hydrophilic layers creates a saddle shape, whereas a deficit leads to a hat shape, the equality corresponding to a cylindrical shape. The usual two layers theory of the spontaneous curvature seems to be improved by considering the role of a median layer. We have tried to illustrate this new point of view by many examples. Due to their asymmetry, monolayers and cell membranes give rise to micelles and vesicles of comparable geometries, but of very different sizes. At the considered scales, a term of order higher than quadratic, such as kt(cc- gammagamma )2, seems to be necessary in the expression of the elastic energy.  相似文献   

16.
Literature data on molecular mobility in glassy polymers have been analyzed. It has been shown that, in the temperature range corresponding to the glassy state of a polymer, a large-scale (segmental) molecular motion is possible, with this motion being responsible for the physical (thermal) aging of the polymer. Heating of an aged polymer restores its initial state, and the aging process begins again (effect of “rejuvenation”). At the same time, aging processes may be initiated by a mechanical action on a glassy polymer. It is sufficient to subject an aged polymer to a mechanical action to transfer it to a state characteristic of a polymer heated above the glass-transition temperature. It should be noted that deformation of a glassy polymer is nonuniform over its volume and occurs in local zones (shear bands and/or crazes). It is of importance that these zones contain an oriented fibrillized polymer with fibril diameters of a few to tens of nanometers, thereby giving rise to the formation of a developed interfacial surface in the polymer. The analysis of the published data leads to a conclusion that the aging of a mechanically “rejuvenated” polymer is, as a matter of fact, the coalescence of nanosized structural elements (fibrils), which fill the shear bands and/or crazes and have a glasstransition temperature decreased by tens of degrees.  相似文献   

17.
A parallel solution-phase library synthesis of functionalized diaminobenzamides is described. The four-step library synthesis is accomplished using polymer-assisted solution-phase (PASP) synthesis techniques. This high-yielding, multi-step sequence utilizes sequestering resins for the removal of reactants, reactant by-products, and employs a resin capture/release strategy as a key library synthesis step. Step one of the sequence relies on the displacement of an activated fluoro-group from the aromatic ring of 1a, b with a variety of primary amines to introduce the first diversity position. Step two is hydrolysis of the benzoate ester to a benzoic acid which is subsequently captured on a polyamine resin, washed, and released to give 4a, b in pure form. Step three utilizes PASP resins to mediate the amide coupling of a benzoic acid with a variety of primary amines to give the aminonitrobenzamides 5a, b and introduces the second diversity position. Step four is the parallel reduction of the aminonitrobenzamides 5a, b to the functionalized diaminobenzamides 6a, b. This library synthesis proceeds with high overall purities which average 80 % over the 4-step sequence.  相似文献   

18.
We apply several methods to probe the ensemble kinetic and structural properties of a model system of poly-phenylacetylene (pPA) oligomer folding trajectories. The kinetic methods employed included a brute force accounting of conformations, a Markovian state matrix method, and a nonlinear least squares fit to a minimalist kinetic model used to extract the folding time. Each method gave similar measures for the folding time of the 12-mer chain, calculated to be on the order of 7 ns for the complete folding of the chain from an extended conformation. Utilizing both a linear and a nonlinear scaling relationship between the viscosity and the folding time to correct for a low simulation viscosity, we obtain an upper and a lower bound for the approximate folding time within the range 70 ns相似文献   

19.
In this paper, we examine the transition from a molecular to monatomic solid in hydrogen over a wide pressure range. This is achieved by setting up two models in which a single parameter δ allows the evolution from a molecular structure to a monatomic one of high coordination. Both models are based on a cubic Bravais lattice with eight atoms in the unit cell; one belongs to space group Pa3, the other to space group R3m. In Pa3 one moves from effective 1-coordination, a molecule, to a simple cubic 6-coordinated structure but through a very special point (the golden mean is involved) of 7-coordination. In R3m, the evolution is from 1 to 4 and then to 3 to 6-coordinate. If one studies the enthalpy as a function of pressure as these two structures evolve (δ increases), one sees the expected stabilization of minima with increased coordination (moving from 1 to 6 to 7 in the Pa3 structure, for instance). Interestingly, at some specific pressures, there are in both structures relatively large regions of phase space where the enthalpy remains roughly the same. Although the structures studied are always higher in enthalpy than the computationally best structures for solid hydrogen - those emerging from the Pickard and Needs or McMahon and Ceperley numerical laboratories - this result is suggestive of the possibility of a microscopically non-crystalline or "soft" phase of hydrogen at elevated pressures, one in which there is a substantial range of roughly equi-enthalpic geometries available to the system. A scaling argument for potential dynamic stabilization of such a phase is presented.  相似文献   

20.
A sheathless and electrodeless nanospray interface has been used to interface a polycarbonate capillary electrophoresis (CE) chip to a mass spectrometer (MS). The chip was made of two flat polycarbonate plates which were bolted together. Channels were imprinted in one of the plates with metal wires, using a hydraulic press. A short tapered capillary connected to the chip was used as the nanospray emitter. The advantage of this electrodeless interface is that it was not necessary to apply a electrospray voltage to the chip or the nanospray emitter. Instead, the CE voltage already applied to the buffer compartment on the chip, to drive the electrophoresis, was used to generate the spray also. A low conductivity buffer of 1.25 mmol/L ammonium acetate in 80% methanol was used to obtain a large electric field across the buffer channel. The performance of the device was evaluated by analyzing a mixture of three beta-agonists Relative standard deviation (RSD) values obtained were between 4.8 and 5.0%. A sample concentration of 40 nmol/L resulted in a signal-to-noise ratio of 2 to 5 for the different components. Compared to a conventional CE analysis in a fused silica capillary with UV detection, only a minor loss of resolution was observed, which can be attributed to the design of the chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号