首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
邓黎  陈爱喜  徐彦秋 《中国物理 B》2008,17(10):3725-3728
In this paper, a scheme is proposed for remote state preparation (RSP) with cavity quantum electrodynamics (QED). In our scheme, two observers share two-atom nonmaximally entangled state as quantum channels and can realize remote preparation of state of an atom. We also propose a generalization for remote preparation of N-atom entangled state by (N+1)-atom GHZ-like state (N ≥ 2). By this scheme, one single-atom projective measurement is enough for the RSP of a qubit or N-atom entangled state, and the probability of success for RSP is unity. Furthermore, we have considered the case where observers use W-like state as quantum channels to realize RSP of a qubit. We compare our scheme with existing ones.  相似文献   

2.
We present two schemes for realizing the remote preparation of a Greenberger--Horne--Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an N-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.  相似文献   

3.
计新  李克  张寿 《中国物理》2006,15(3):478-481
We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED). In the scheme, we choose a single Einstein--Podolsky--Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver. By using the atom--cavity-field interaction and introducing an additional atom, we can teleport the two-atom entangled state successfully with a probability of 1.0. Moreover, we show that the scheme is insensitive to cavity decay and thermal field.  相似文献   

4.
Probabilistic remote preparation of a two-atom entangled state   总被引:2,自引:0,他引:2       下载免费PDF全文
张英俏  金星日  张寿 《中国物理》2005,14(9):1732-1735
A scheme for remotely preparing a two-atom entangled state via entanglement swapping in cavity quantum electronic dynamics (QED) with the help of separate measurements is proposed. And the effect of cavity decay is eliminated in our scheme.  相似文献   

5.
林秀  李洪才  杨榕灿 《中国物理》2007,16(3):624-629
We present a scheme for realizing probabilistic teleportation of an unknown N-atom state via cavity QED. This scheme requires only a nonmaximally entangled pair to be used as a quantum channel, so the requirement of entanglement is reduced. In addition, our scheme does not involve the Bell-state measurement and is insensitive to the cavity decay, which is important from the experimental point of view. If the quantum channel is a two-atom maximally entangled state, teleportation of an unknown N-atom state can be realized by a simpler scheme via cavity QED.  相似文献   

6.
詹佑邦 《中国物理 B》2008,17(2):411-414
This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. In the second stage of the scheme, with the assistance of the preparer, the perfect copies of an unknown atomic entangled state can be produced.  相似文献   

7.
叶赛云 《中国物理》2007,16(6):1678-1682
This paper proposes a scheme for teleporting a two-atom entangled state using leaky cavities. It uses resonant atom--cavity interaction to map the atomic state onto the cavity field. Then it utilizes the interference of polarized photons to establish the correlation between the distant sender and receiver. The advantage of the scheme is that the fidelity is independent of the cavity decay rate, atomic decay and detection efficiency.  相似文献   

8.
We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED. It is Shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not, our teleportation scheme can always be probabilistically realized. The success prohability of teleportation is determined by the smaller coemcients of the two initially entangled atom pairs.  相似文献   

9.
杨贞标 《中国物理》2007,16(2):329-334
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom--cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom--cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger--Horne--Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.  相似文献   

10.
疏静  刘中 《理论物理通讯》2010,53(6):1155-1159
We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamies (QED). The scheme can 5e extended to generation of entangled multi-atom Dicke states if we control the interaction time of atoms with cavity modes. We use adiabatically state evolution under large atom-cavity detuning, so the scheme is insensitive to atomic spontaneous decay. The influence of cavity decay on fidelity and success probability is discussed.  相似文献   

11.
杨志刚  吴婷婷  刘金明 《物理学报》2016,65(2):20302-020302
基于低Q腔中单光子的输入与输出关系,提出了利用偏振光Faraday旋转分别遥远制备单原子态和两原子纠缠态的可行方案.研究结果表明,当初始原子态的系数为实数时,通过选择合适的偏振光、腔场与原子相互作用系统的参数,单原子态与两原子纠缠态的远程制备均可确定性地得以实现.与以前的原子态远程制备方案相比,本文方案采用光子作为飞行比特来传递量子信息,故原则上可实现原子态的真正长距离制备.由于原子态的信息编码在耗散单边腔囚禁的Λ型三能级原子的两个基态能级,且原子仅虚激发,因此本文方案对腔衰减和原子自发辐射不敏感.此外,本文所提出的两种方案不需要两体或多体正交测量,仅涉及单体直积态测量,而且两种方案都工作在低Q腔,不需要原子与光腔的强耦合,从而有效降低了实验难度.  相似文献   

12.
We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities. In this scheme, the effects of thermal field and cavity decay can be all eliminated. Moreover, the present scheme is feasible according to current technologies.  相似文献   

13.
提出了一种外场驱动下在腔QED中实现任意两原子态隐形传送的方案.在隐形传送的过程中.以两原子最大纠缠态作为量子通道,不用考虑腔场耗散和外界热场环境的影响.在传送过程中包含着对原子的Bell基测量,但不需要直接进行Bell基测量,而且最终能成功实现传送的几率为1.0.同时这种方案也可以用来传送未知的三原子GHZ态,传送的几率也为1.0.  相似文献   

14.
We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a A-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.  相似文献   

15.
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.  相似文献   

16.
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state. The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.  相似文献   

17.
曹卓良 《物理学报》2008,57(1):55-59
This paper proposes an experimentally feasible scheme for teleportation of an unknown two-atom entangled state, where a cluster state is used as the quantum channel. This scheme does not need any joint measurement. In addition, the successful probability and fidelity of teleportation can both reach 1.0. The current scheme can be realized within the current experimental technology.  相似文献   

18.
This paper proposes an experimentally feasible scheme for teleportation of an unknown two-atom entangled state, where a cluster state is used as the quantum channel. This scheme does not need any joint measurement. In addition, the successful probability and fidelity of teleportation can both reach 1.0. The current scheme can be realized within the current experimental technology.  相似文献   

19.
远程制备双原子纠缠态   总被引:1,自引:1,他引:0  
陈美锋  马宋设 《光子学报》2008,37(1):188-191
提出一种远程制备双原子纠缠态的方案,该方案基于两个原子与单模腔场的同时非共振相互作用.由于双粒子纠缠态比三粒子纠缠态容易制备,方案用两对双原子纠缠态作为量子通道.Alice 拥有的两个相同原子同时与一单模腔场非共振相互作用.Alice已知她要制备的纠缠态,她选择适当的相互作用时间、测量她所拥有的两个原子并通过经典通道通知Bob.Bob引入一个相同的辅助原子和一个单模腔场来实现方案.方案对腔场状态和腔损耗不敏感,基于当前的腔QED 技术,方案能在实验上实现.该方案有望在量子信息过程中有重要的应用价值.  相似文献   

20.
A scheme is proposed for the controlled teleportation of an arbitrary two-atom state via special W-type entangled states and QED cavity. The scheme does not involve the direct joint Bell-state-measurement (BSM). We show that the quantum information is split into two parts~ thus the original atomic state cannot be perfectly restored by the receiver without the other agent's collaboration and classical communication. In addition, the physical realization of this scheme is not difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号