首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental observations are presented of the effect of flow velocity, oxygen concentration, and a thermal radiant flux on the transition from smoldering to flaming in forward smoldering of small samples of polyurethane foam with a gas/solid interface. The experiments are part of a project studying the transition from smoldering to flaming under conditions encountered in spacecraft facilities, i.e., microgravity, low velocity variable oxygen concentration flows. Because the microgravity experiments are planned for the International Space Station, the foam samples had to be limited in size for safety and launch mass reasons. The feasible sample size is too small for smolder to self-propagate because of heat losses to the surroundings. Thus, the smolder propagation and the transition to flaming had to be assisted by reducing heat losses to the surroundings and increasing the oxygen concentration. The experiments are conducted with small parallelepiped samples vertically placed in a wind tunnel. Three of the sample lateral-sides are maintained at elevated temperature, and the fourth side is exposed to an upward flow and a radiant flux. It is found that decreasing the flow velocity and increasing its oxygen concentration, and/or increasing the radiant flux enhances the transition to flaming and reduces the time delay to transition. Limiting external conditions for the transition to flaming are reported for this experimental configuration. The results show that smolder propagation and transition to flaming can occur in relatively small fuel samples if the external conditions are appropriate. The results also indicate that transition to flaming occurs in the char region left behind by the smolder reaction, and it has the characteristics of a gas-phase ignition induced by the smolder reaction, which acts as the source of both gaseous fuel and heat. A simplified energy balance analysis is able to predict the boundaries between the transition/no transition regions.  相似文献   

2.
The influence of oxygen (O2) concentration and inert on the sooting and burning behavior of large ethanol droplets under microgravity conditions was investigated through measurements of burning rate, flame temperature, sootshell diameter, and soot volume fraction. The experiments were performed at the NASA Glenn Research Center (GRC) 2.2 s drop tower in Cleveland, OH. Argon (Ar), helium (He), and nitrogen (N2) were used as the inerts and the O2 concentration was varied between 21% and 50% mole fraction at 2.4 atm. The unique configuration of spherically symmetric droplet flames enables effective control of sooting over a wide range of residence time of fuel vapor transport, flame temperature, and regimes of sooting to investigate attendant influences on burning behavior of droplets. For all inert cases, soot volume fraction initially increased as a function of the O2 concentration. The highest soot volume fractions were measured for experiments in Ar environments and the lowest soot volume fractions were measured for the He environments. These differences were attributed to the changes in the residence time for fuel vapor transport and the flame temperature. For the He inert and N2 inert cases, the soot volume fraction began to decrease after reaching a maximum value. The competition between the influence of residence time, rate of pyrolysis reactions, and soot oxidation can lead to this interesting behavior in which the soot volume fraction varies non-monotonically with increase in O2 concentration. These experiments have developed new understanding of the burning and sooting behaviors of ethanol droplets under various O2 concentrations and inert substitutions.  相似文献   

3.
A series of numerical calculations of flame spread of an n-decane droplet array was conducted at different ambient temperatures (Ta = 300 and 573 K) for S/d0 from 1.5 to 10, where S is the droplet interval and d0 is the initial droplet diameter. The authors compared these numerical results with experimental results under similar conditions at different ambient temperatures for the first time in this study. Good qualitative agreement in flame spread behavior between numerical results and microgravity experiments is obtained. Flame spread mode changed with an increase in S/d0. Also, appearance of the flame spread mode in a stepping-stone manner (Mode III in [Jpn. Soc. Mech. Eng. 68 (672) (2002) 2423]) in a normal temperature environment was verified by numerical calculations and microgravity experiments, although it was not predicted in the theoretical analysis. In addition, good qualitative agreement of flame spread rate Vf versus S/d0 was obtained between numerical and experimental results, although numerical results were at least twice as large as experimental results. Vf had a maximum peak at a specific S/d0 for a different ambient temperature. Employment of improved reaction model and consideration for thermal radiation heat transfer are expected to produce quantitatively better results. An increase in surface temperature of unburned droplets and the development of a flammable gas layer around the droplets were promoted in a high-temperature environment, due to an increase in heat transfer from ambient air to the droplet. As a result, Vf was increased by the higher ambient temperature, suggesting that ambient temperature plays a significant role both in the flame spread mode and the flame spread rate through promotion of a flammable gas layer around unburned droplets.  相似文献   

4.
Numerical computations and a series of experiments were conducted in microgravity to study the ignition characteristics of a thin polymethylmethacrylate (PMMA) sheet (thicknesses of 0.2 and 0.4 mm) using a CO2 laser as an external radiant source. Two separate ignition events were observed, including ignition over the irradiated surface (frontside ignition), and ignition, after some delay, over the backside surface (backside ignition). The backside ignition was achieved in two different modes. In the first mode, after the laser was turned off, the flame shrank and stabilized closer to the fuel surface. This allowed the flame to travel from the frontside to the backside through the small, open hole generated by the laser’s vaporization of PMMA. In the second mode, backside ignition was achieved during the laser irradiation. The numerical calculation simulating this second process predicts fresh oxygen supply flows from the backside gas phase to the frontside gas phase through the open hole, which mixes with accumulated hot MMA fuel vapor which is ignited as a second flame in the frontside gas phase above the hole. Then, the flame initiated from the second ignition travels through the hole to ignite the accumulated flammable mixture in the backside gas phase near the hole, attaining backside ignition. The first backside ignition mode was observed in 21% oxygen and the second backside ignition mode in 35%. The duration of the laser irradiation appears to have important effects on the onset of backside ignition. For example, in 21% oxygen, the backside ignition was attained after a 3 s laser duration but was not observed after a 6 s laser duration (within the available test time of 10 s). Longer laser duration might prevent two-sided ignition in low oxygen concentrations.  相似文献   

5.
针对微重力下低温贮箱压力升高的问题,简要介绍了几种常用的低温贮箱压力控制的方法及原理,讨论了它们各自存在的问题,并简要展望未来低温贮箱压力控制技术的发展方向。文章指出,未来研究重点在于将主动制冷与被动绝热相结合,实现零蒸发贮存的热转移技术。  相似文献   

6.
The objective of this work was to investigate the effect of external radiation angle on radiative ignition of solid materials. A laser ignition experiment was performed in microgravity to investigate events occurring in the ignition process in a quiescent atmosphere. Filter paper was used as the test material, and it was heated by infrared radiation (CO2 laser 10.6 μm) or near-infrared radiation (diode laser, 800.1 nm). The ignition time was determined for various irradiation angles, and the gas phase density change before ignition was observed by a Mach–Zehnder interferometer for each test condition. The results showed that the ignition by CO2 laser occurred on the laser beam line depending on the irradiation angle, while diode laser caused a similar ignition position independent of the irradiation angle. The period from gasification to ignition with CO2 laser was almost the same for different irradiation angles, while it varied with the irradiation angle for diode laser, and the ignition time was much shorter than that with diode laser. According to these results, it is considered that solid ignition with inclined external radiation is characterized based on (1) solid surface heating and (2) gas phase heating, and the second factor, gas phase heating, causes the different dependence of solid ignition on irradiation angle with different radiation wavelengths.  相似文献   

7.
The importance of radiation heat loss in laminar and turbulent diffusion flames at normal gravity has been relatively well recognized in recent years. There is currently lack of quantitative understanding on the importance of radiation heat loss in relatively small scale laminar diffusion flames at microgravity. The effects of radiation heat transfer and radiation absorption on the structure and soot formation characteristics of a coflow laminar ethylene/air diffusion flame at normal- and microgravity were numerically investigated. Numerical calculations were conducted using GRI-Mech 3.0 combustion chemistry without the NOx mechanism and complex thermal and transport properties, an acetylene based soot formation model, and a statistical narrow-band correlated-k non-grey gas radiation model. Radiation heat transfer and radiation absorption in the microgravity flame were found to be much more important than their counterparts at normal gravity. It is important to calculate thermal radiation transfer accurately in diffusion flame modelling under microgravity conditions.  相似文献   

8.
The burning and sooting behaviors of isolated fuel droplets for ethanol and n-decane are examined in high concentration of the ambient carbon dioxide under microgravity. A quartz fiber with the diameter of 50 μm maintains the droplet in the center of the combustion chamber and the range in the initial droplet diameter is from 0.30 to 0.80 mm. The ambience consists of oxygen, nitrogen and carbon dioxide. The concentration of oxygen is 21% in volume, and that of carbon dioxide is varied from 0% to 60% in volume. Detail measurements of the projected image of the droplet are conducted by using a high speed video camera and the effective droplet diameter squared are calculated from the surface area of the rotating body of the projected object. From evolutions of the droplet diameter squared, the instantaneous burning rates are calculated. Time history of the instantaneous burning rate clearly represents the droplet combustion events, such as the initial thermal expansion, ignition and following combustion. The instantaneous burning rate for n-decane shows an increasing trend during combustion, while that for non-sooting ethanol remains almost constant or shows a decreasing trend. A slight stepwise increase in the instantaneous burning rate is observed for larger n-decane droplets in air, which may be attributed to soot accumulation. However, this behavior of the burning rate disappears in higher concentration of carbon dioxide. Direct observation of the droplet flame indicates suppression of soot production in higher concentration of carbon dioxide and the suppression is enhanced for smaller droplet.  相似文献   

9.
Omnidirectional total reflectors based on one-dimensional dielectric and magnetic photonic crystals are investigated in this paper. We adopt the transmission matrix method to analyze the transmission properties of such reflectors and use the decimal genetic algorithm to obtain broad omnidirectional total reflection (ODTR) bandwidth. Finally, an omnidirectional total reflector with very broad ODTR bandwidth of 1.34ω0 is achieved.  相似文献   

10.
A method of determination of chemical shift anisotropy (CSA) tensor principal components under MAS condition is presented. It is a simple, one-dimensional, and robust alternative to the commonly exploited, but more complicated 2D-PASS. The required CSA components are delivered by simultaneous numerical analysis of a few regular MAS spectra acquired under different spinning rates.  相似文献   

11.
Flame spread experiments in both concurrent and opposed flow have been carried out in a 5.18-s drop tower with a thin cellulose fuel. Flame spread rate and flame length have been measured over a range of 0–30 cm/s forced flow (in both directions), 3.6–14.7 psia, and oxygen mole fractions 0.24–0.85 in nitrogen. Results are presented for each of the three variables independently to elucidate their individual effects, with special emphasis on pressure/oxygen combinations that result in earth-equivalent oxygen partial pressures (normoxic conditions). Correlations using all three variables combined into a single parameter to predict flame spread rate are presented. The correlations are used to demonstrate that opposed flow flames in typical spacecraft ventilation flows (5–20 cm/s) spread faster than concurrent flow flames under otherwise similar conditions (pressure, oxygen concentration) in nearly all spacecraft atmospheres. This indicates that in the event of an actual fire aboard a spacecraft, the fire is likely to grow most quickly in the opposed mode as the upstream flame spreads faster and the downstream flame is inhibited by the vitiated atmosphere produced by the upstream flame. Additionally, an interesting phenomenon was observed at intermediate values of concurrent forced flow velocity where flow/flame interactions produced a recirculation downstream of the flame, which allowed an opposed flow leading edge to form there.  相似文献   

12.
同时考虑一维梁结构的弯曲和轴向振动,对其压电阻抗模型进行建模分析和试验验证。在0.02~42 kHz频段内区分并标记了一维钢梁弯曲振动模态前18阶及轴向振动模态前3阶。结果表明:在0.02~7.5kHz频段内,数值计算和试验结果中谐振峰对应频率的相对误差较大:11.7%~16.5%,其原因可能是低频时振动能量较低且波的传播受结构阻尼、边界条件及环境噪音等因素影响较为明显;在7.5~42kHz范围内,两者谐振峰位置符合良好,相对误差较小:0.11%~2.31%,表明该模型在高频段具有较好的适用性;轴向振动模态对应频率大于弯曲振动模态。本研究为结构健康监测过程中检测频段的选取及损伤信息的提取提供参考。  相似文献   

13.
自适应光学系统几种随机并行优化控制算法比较   总被引:4,自引:2,他引:4       下载免费PDF全文
 直接对系统性能指标进行优化是自适应光学系统中一种重要的波前畸变校正方法,选择合适的随机并行优化控制算法是该技术成功实现的关键。以32单元变形镜为校正器,基于多种随机并行优化算法建立自适应光学系统仿真模型。从算法的收敛速度、校正效果、局部极值3个方面对遗传算法、单向扰动随机并行梯度下降、双向扰动随机并行梯度下降及模拟退火算法进行了比较。仿真结果表明,遗传算法收敛速度太慢,不适用于需要实时控制的自适应光学系统;双向扰动随机并行梯度下降算法收敛速度、校正效果要优于单向扰动随机并行梯度下降,且能够适应各种情况下的扰动电压;模拟退火几乎以概率1收敛到全局极值附近,且收敛速度是上述算法中最快的。  相似文献   

14.
 将辛算法推广到复辛空间,指出了辛算法保定态Schr-dinger方程的Wronskian守恒。将辛算法应用于强场一维模型的计算中,并与Runge-Kutta法作了比较。结果显示,辛算法保持定态Schr-dinger方程的Wronskian守恒,适合于在充分 远空间上计算线性无关解,是计算强激光场一维模型的合理的数值方法。  相似文献   

15.
16.
Optimization of Circular Ring Microstrip Antenna Using Genetic Algorithm   总被引:1,自引:0,他引:1  
Circular ring microstrip antennas have several interesting properties that make it attractive in wireless applications. Although several analysis techniques such as cavity model, generalized transmission line model, Fourier-Hankel transform domain and the method of matched asymptotic expansion have been studied by researchers, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity model analysis along with the genetic optimization algorithm is presented for the design of circular ring microstrip antennas. The method studied here is based on the well-known cavity model and the optimization of the dimensions and feed point location of the circular ring antenna is performed via the genetic optimization algorithm, to achieve an acceptable antenna operation around a desired resonance frequency. The antennas designed by this efficient design procedure were realized experimentally, and the results are compared. In addition, these results are also compared to the results obtained by the commercial electromagnetic simulation tool, the FEM based software, HFSS by ANSOFT.  相似文献   

17.
We present a new approach to modeling of homogeneous line shape in two-photon absorption (2PA) spectra of chromophores with large permanent dipole moment difference between the ground- and excited electronic states using numerical solution of stochastic two-level density matrix equation of motion. Good agreement with experimental 2PA line shapes is obtained for S1←S0 transition of Styryl 9 M, which allows us to estimate that the permanent dipole moment difference varies in this chromophore within the S1←S0 band in the range, Δμ=12-25 D.  相似文献   

18.
建立了相关实验电池多物理场模型,该模型包括了电化学反应的电化学势平衡方程、甲烷水汽重整的通用速率方程和描述阳极复杂组分气体输运的菲克定律形式尘气模型. 该理论模型的电流~电压 曲线与实验数据很好地吻合,验证了理论模型的有效性. 理论分析发现,低水汽含量甲烷重整反应中水汽的反应级数为1. 理论模型的数值仿真计算还给出多个物理量的详细信息. 据此对碳沉积机制进行深入分析,清楚地描述了工作电流对抑制焦炭生成的机制. 分析比较了积碳活性的两个表达式,发现它们都可以正确地定性反映积碳活性变化趋势,但定量数值并不确切;阳极扩散层降低积碳临界电流的机制也获得了解释. 值得指出的是,虽然积碳活性模型只是定性正确,但分析表明积碳临界电流的降低却可以通过积碳活性模型进行定量解释.  相似文献   

19.
韩秀琴  姜虹  石玉仁  刘妍秀  孙建华  陈建敏  段文山 《物理学报》2011,60(11):116801-116801
文章基于一维Frenkel-Kontorova模型,研究了边界原子的初始速度对原子链运动状态的影响,数值模拟结果表明:当v1时,原子处于"振荡区",当v12时,原子处于"混沌区",当v>v2时,原子处于 "均匀区". 同时我们发现临界速度v1和v2随原子数目和垫底势高度的变化而变化. 关键词: Frenkel-Kontorova(FK)模型 相变  相似文献   

20.
遗传算法用于傅里叶变换红外光谱的定量解析   总被引:7,自引:3,他引:4  
本文利用遗传算法对混叠的傅里叶变换红外光谱图进行了定量的解析。文中分析了最多包含了十个组分的大气有毒有机物(苯,四氯化碳,氯苯,硝基苯,苯酚,甲苯,甲醇,邻甲酚,间甲酚和对甲酚)的混合谱图,建立了适当目标函数,使用了自适应变异技术,讨论了交叉和变异概率对结果的影响。结果证明遗传算法有着极好的非线性特征。在适当的条件下,结果的相对误差小于1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号