首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Surface science》1993,297(1):L68-L72
We present a density functional calculation within the generalized gradient approximation of the H2 induced dipole moment along the reaction path for dissociation outside an Al(110) surface. The dipole moment is found to change sign during the adsorption process, being positive far from the surface and negative closer in where the antibonding H2 level is being filled. Assuming this variation to be qualitatively similar for other surfaces, we can classify the effect of an electrostatic field or an adsorbed alkali atom on the adsorption process according to whether the barrier to adsorption is in the entrance channel or the exit channel. The electrostatic interaction model is shown to qualitatively explain why adsorbed alkalies promote the dissociation of  相似文献   

3.
4.
Reconstruction of a Ni (110) surface under the influence of adsorbed hydrogen atoms can proceed in two different ways: Below 180 K a 2×1 lattice-gas structure with θH = 1.0 transforms cooperatively into a two-dimensional 1×2 structure by additional uptake of hydrogen up to θH = 1.5. At higher temperatures, activated local transformation into a more stable one-dimensional structure starts already at low coverages.  相似文献   

5.
本文采用基于密度泛函理论(DFT)的第一原理赝势平面波(PW-PP)方法,对氢分子在Mg2Ni(010)面的吸附与分解进行了研究,我们发现氢分子以Hor1的方式吸附在表面层Ni原子的顶位时吸附能最高,为0.6769eV,这表明氢分子最可能以Hor1的方式吸附在表面层Ni原子的顶位,此时氢分子跟表面的距离( )和氢分子的键长( )分别为1.6286Å和0.9174Å. 在分子吸附的基础上计算了氢分子沿着选取的反应路径分解时的反应势垒,发现要使氢分子分解需要0.2778eV的活化能,而氢分子分解时的吸附能为0.8390eV,分解后两个氢原子的距离为3.1712Å. 在分子吸附和分解吸附时氢原子跟正下方的Ni原子都有较强的相互作用,氢原子所得到的电子主要来自氢分子正下方的Ni原子.  相似文献   

6.
The adsorption of H2O on Al(111) has been studied by ESDIAD (electron stimulated desorption ion angular distributions), LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and thermal desorption in the temperature range 80–700 K. At 80 K, H2O is adsorbed predominantly in molecular form, and the ESDIAD patterns indicate that bonding occurs through the O atom, with the molecular axis tilted away from the surface normal. Some of the H2O adsorbed at 80 K on clean Al(111) can be desorbed in molecular form, but a considerable fraction dissociates upon heating into OHads and hydrogen, which leaves the surface as H2. Following adsorption of H2O onto oxygen-precovered Al(111), additional OHads is formed upon heating (perhaps via a hydrogen abstraction reaction), and H2 desorbs at temperatures considerably higher than that seen for H2O on clean Al(111). The general behavior of H2O adsorption on clean and oxygen-precovered Al(111) (θO ? monolayer) is rather similar at low temperature, but much higher reactivity for dissociative adsorption of H2O to form OH adsis noted on the oxygen-dosed surface around room temperature.  相似文献   

7.
《Surface science》1986,175(3):L811-L816
The effect of co-adsorption of hydrogen and CO on Ni(110) has been examined with HREELS. In the mixed adlayer at low CO and hydrogen coverage, the spectra indicate that no strong interaction between H(a) and CO(a) occurs. At high hydrogen coverage the surface reconstructs and consequently the adsorption site for the CO is modified. The reconstruction and site modification is reversible and depends on the hydrogen coverage.  相似文献   

8.
采用实时双光子光电子能谱和时间分辨双光子光电子能谱技术分别研究了乙醇在该表面光催化解离的动力学和超快电子动态学过程. 通过测量与乙醇光催化解离相关的电子激发态随时间的演化,发现这个反应满足分型动力学. 乙醇在还原性TiO2(110)上的光催化解离比在氧化性表面快,这归结于缺陷的存在降低了反应能垒. 这样一个反应的加速过程很可能是与缺陷电子相关的. 通过干涉双脉冲相关的测量,得到了乙醇-TiO2界面电子激发态的超快动态学. 与甲醇的情况类似,这个电子激发态的寿命为24 fs. 激发态的出现为TiO2和它周围环境的电子转移提供了一个通道.  相似文献   

9.
10.
《Surface science》1986,175(1):L675-L680
Chemisorption of H2 and CO was studied on stoichiometric and defective TiO2(110) surfaces by means of changes in surface conductivity, work function, XPS, AES, LEED and ELS. Defective surfaces were prepared by thermal pretreatment under thermodynamically controlled conditions and by evaporation of excess Ti. The results are discussed in a modified charge transfer model in terms of partial charges and dipole moments formally attributed to adsorption complexes.  相似文献   

11.
D.S. Choi  D.H. Kim 《Surface science》2010,604(19-20):1737-1741
We have investigated the surface structure of the Al/W(110) surface using low energy electron diffraction (LEED) and low energy ion scattering spectroscopy (ISS). We observe a p(2 × 1) double domain LEED image for the 0.5 ML Al/W(110) surface at annealing temperature 850 °C. We found that 0.5 ML Al atoms cover on the W(110) surface uniformly but do not form 3 or 2-dimensional islands. We also measured the Al adsorption site at the Al/W(110)-p(2 × 1) surface using ISS. We found that Al atoms adsorbed at the center of the bridge site. The height of the adsorbed Al atoms is determined to be 2.18 ± 0.15 Å above the W surface layer.  相似文献   

12.
Scanned-energy mode photoelectron diffraction results show the adsorption site of molecular water on TiO2(110) to be atop under-coordinated surface Ti atoms, confirming the results of total energy calculations and STM imaging. However, the Ti-O(water) bond length is 2.21 +/- 0.02 A, much longer than Ti-O bond lengths in strongly chemisorbed species on this surface, but significantly shorter than found in most total energy calculations. The need for theory to describe this weak bond effectively may be a key factor in the controversial problem of understanding this important surface reaction system.  相似文献   

13.
Binding states and sticking coefficients of CO and H2 on clean and oxide covered (110) planes of Pt are examined using flash desorption mass spectrometry to characterize binding states and Auger electron spectroscopy (AES) to characterize oxide densities. It is found that on the oxide both adsorbates have new binding states with significantly higher binding energies than on the clean surface. For H2 the binding states associated with the clean surface are also shifted to higher energies as the oxide coverage increases. The oxide state for H2 desorbs with first order kinetics, and isotope exchange experiments are used to examine exchange between isotopes and between states. The initial sticking coefficients for CO are 1.0 and 0.85 on clean and oxidized surfaces, and the initial sticking coefficient for H2 increases from 0.15 on the clean surface to 0.28 on the oxidized surface. Enhanced bonding on the oxide is interpreted in terms of models involving microfacets, electronic structure alteration, and compound formation.  相似文献   

14.
《Surface science》1996,367(3):L91-L94
Recently, Nahm and Gomer have measured the increase in entropy associated with the adsorption of hydrogen on the W(110) surface. We discuss the implications of this data, and address it within the framework of a model introduced recently [Phys. Rev. Lett. 68 (1992) 2846; Surf. Sci. 287/288 (19930 837] to describe hydrogen dynamics on this surface.  相似文献   

15.
16.
17.
Alloy formation at the Ni–Al interface for thin nickel films deposited on Al(110) surfaces has been studied using high-energy ion scattering/channeling (HEIS) and X-ray photoelectron spectroscopy (XPS). For nickel atoms deposited at room temperature on Al(110), a large amount of nickel–aluminum intermixing occurs at the interface. For the first two monolayers (ML) of deposited nickel, an NiAl-like compound is formed. The intermixing continues with a different rate, forming an Ni3Al-like compound for nickel coverages from 2 to 8 ML, at which point a nickel metal film begins to grow on the surface. Nickel atoms deposited at 250°C on the Al(110) surface exhibit no surface compound formation, but diffuse up to 400 Å into the aluminum substrate. Interatomic potentials based on the embedded-atom method (EAM) are used in a Monte Carlo approach to simulate the evolution of the Ni–Al(110) interface as a function of the nickel coverage. The calculated ion-scattering yields and X-ray photoelectron intensities from nickel and aluminum atoms in these simulated interfaces are in good quantitative agreement with the experimental results. The simulations show a high-density Ni–Al alloy forming at the Al(110) surface which apparently inhibits outward diffusion of aluminum, leading to the more nickel-rich alloy and finally nickel film growth. The ion-scattering simulations show an unusually large amount of backscattering occurring below the Ni–Al(110) interface, apparently associated with defocusing of the incident ion beam.  相似文献   

18.
《Surface science》1986,173(1):138-147
The adsorption kinetics of C2H2 and C2H4 gases on W(110) have been studied using Auger electron spectroscopy and qualitative LEED. Below 1100 K, adsorption of either C2H2; or C2H4 does not follow any simple kinetic model to saturation. At 1100 K adsorption is identical for both gases and follows first order monolayer kinetics with unity sticking coefficient and a carbon-to-tungsten atomic ratio of 0.64 ± 0.05. This carbon is present as a surface carbide which starts to in-diffuse about 1500 K and has completely dissolved after a few seconds at 2400 K.  相似文献   

19.
We use first-principles density-functional theory to identify several stable binding sites for adsorbed O2 and O on Al(110). Our calculations indicate that it is energetically favorable for O2 to dissociate to two atoms on Al(110). When O2 dissociates, it is energetically favorable for the resulting O atoms to exist as dimers. We identify several possible configurations for O dimers on this surface, and quantify atomic interactions between an Al adatom and these dimers. Our work provides insight into the initial stages of oxidation of Al(110), as well as the role of oxygen impurities in Al thin-film epitaxy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号