首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The far-infrared spectra of Ge10Se90−xTex where x = 0, 10, 20, 30, 40, 50 glassy alloys were measured in the wavenumber region 50-650 cm−1 at room temperature. The results were explained in terms of the vibrations of the isolated molecular units. The addition of Te in Ge10Se90 has shown the appearance of GeTe2 and GeTe4 molecular units and vibrations of Se-Te bond as Se8−xTex mixed rings. The assignment of various absorption bands has been made on the basis of absorption spectra of pure Se, binary Ge-Se, Ge-Te, Se-Te and ternary Ge-Se-Te glassy alloys. The far-infrared transmission spectrum has been found to shift a little towards lower wavenumber side with the addition of Te content to Ge10Se90. The addition of Te to Ge-Se system replacing Se has found to reduce the Se-Se bonds and Ge-Se bonds and leads to the formation of Se-Te, Ge-Te and Te-Te bonds.  相似文献   

2.
Results of differential scanning calorimetry (DSC) under non-isothermal condition on Se96In4 semiconducting chalcogenide glass before and after slow neutron irradiation, for different exposure times, have been reported and discussed. Some of Sn atoms have been injected into the glass by nuclear transmutation processes and the binary glass is converted into a ternary. This is accompanied by an increase in the activation energy of crystallization, Ec, and in the glass transition temperature, Tg and a decrease in the glass transition activation energy, Et, in the onset crystallization temperature, Tc and in the peak temperature of crystallization Tp. Optical band gap measurements have also been carried out, before and after irradiation, on identical thin pellets of Se96In4 glass. The energy band gap, Eg, is found to decrease upon irradiation. These effects have been attributed to a structural change upon doping and to irradiation induced defects.  相似文献   

3.
Resistivity and thermoelectric power were measured as a function of temperature and composition for Ge20BixSe70?xTe10 glasses (x = 0–11). The results were compared with the case of of Ge20BixSe80?x glasses to see on the electrical properties the influence of the substitution of Te for a part of Se. The glasses show n-type conduction for x ? 9, which was not affected by the substitution of Te. The resistivity was about three orders of magnitude lower for the glasses with x < 10, and remained almost the same for x ? 10, compared with the glasses not containing Te. From the composition dependence of the calculated concentration of covalent bonds in the glasses, it was proposed that the appearance of n-type conduction was closely related to the formation of a sufficient number of BiSe bonds and the disappearance of the bonds between two chalcogen atoms such as TeSe or SeSe bonds, and that the remarkably low resistivity in the present glasses with x < 10 was likely to be attributed to the formation of TeSe bonds.  相似文献   

4.
The local order in amorphous films of As2Se3, As2Se2Te, As2SeTe2, and As2Te3 has been examined by scanning electron diffraction with direct recording of the intensity of the elastically scattered electrons. The radial distribution functions indicate that there is a systematic increase in mean nearest neighbor distance as the Te concentration is increased, butthe mean coordination number increases slightly around 2.4. Pair function calculation of models shows that the 3-aand 2-fold coordinations of arsenic and chalcogens are retained in these glasses and the interatomic distances are close to those predicted from the Pauling covalent atomic radii of the constituent atomic species. The short range order appears to be similar in amorphous and crystalline As2Se3, but different in the case of As2Te3 as found by previous workers on bulk materials.  相似文献   

5.
Using X-ray diffraction and differential scanning calorimetry (DSC), the structure and the crystallization mechanism of Se0.8Te0.2 chalcogenide glass has been studied. The structure of the crystalline phase has been refined using the Rietveld technique. The crystal structure is hexagonal with lattice parameter a = 0.443 nm and c = 0.511 nm. The average crystallite size obtained using Scherrer equation is equal 16.2 nm, so it lies in the nano-range. From the radial distribution function, the short range order (SRO) of the amorphous phase has been discussed. The structure unit of the SRO is regular tetrahedron with (r2/r1) = 1.61. The Se0.8Te0.2 glassy sample obeys the chemical order network model, CONM. Some amorphous structural parameters have been deduced. The crystallization mechanism of the amorphous phase is one-dimensional growth. The calculated value of the glass transition activation energy (Eg) and the crystallization activation energy (Ec) are 159.8 ± 0.3 and 104.3 ± 0.51 kJ/mol, respectively.  相似文献   

6.
An analysis of the atomic radial distribution function of Al0.20As0.30Te0.30, Al0.10As0.40Te0.50 and Al0.10As0.20Te0.70 amorphous alloys obtained from quenching of the molten mixture of the elements was performed. A structure in which all the Al atoms are tetrahedrally bonded to the other types of atoms in the material, would satisfy the requirements of the experimental curve. Tetrahedral groups might be linked to each other by As and Te atoms, or directly through a Te or As atom belonging to more than one tetrahedra.  相似文献   

7.
Different thermodynamic parameters (quantities) of Se80 − xTe20Znx (x = 2, 4, 6, 8 and 10) glasses have been obtained from the phase transformation studies using Differential Scanning Calorimetry (DSC) under non-isothermal condition at five different heating rates (10-50 K/min). Specific heat measurements have been made to see the effect of Zn additive in Se-Te-Zn glasses which have further been utilized to evaluate various thermodynamic quantities such as entropy difference (ΔS), enthalpy difference (ΔH) and Gibbs free energy difference (ΔG) between the undercooled melt and the corresponding equilibrium solid phases as a function of temperature. The data obtained from different thermodynamic quantities have been used to determine the stability of these glasses. It has been found that the stability of the samples increases with the increase of Zinc (Zn) content in the investigated series of the glassy alloys.  相似文献   

8.
A spherical-shaped model of Al0.20As0.50Te0.30, Al0.10As0.40Te0.50 and Al0.10As0.20Te0.70 amorphous alloys has been performed by the random Monte Carlo method. These models describe quite well the experimental radial distribution functions and abide by the expected coordination numbers apart from the threefold coordinated Te, of which an excess has appeared. The structures are formed, basically, of distorted tetrahedra around the Al atoms whose corners are occupied by As or Te atoms. Also, a separated phase model for Al0.10As0.20Te0.70 alloy has been built taking into account the results of thermodynamical study on this amorphous alloy system. The fitting of this model was better than that of the model generated under the hypothesis of a continuous phase.  相似文献   

9.
Amorphous As2Se1Te2 (a-As2Se1Te2) films, into which Cu or Cd ions were doped by thermal diffusion below the glass transition temperature exhibited the increase of conductivity by several orders of magnitude. In addition, these samples exhibited enhanced photoconductivity and the activation type conduction. From the measurements of the thermoelectric power, it was found that Cu doped samples were p-type and Cd doped samples were n-type. The impurities was also studied by SIMS.  相似文献   

10.
Y.B. Wang  G. Zhao  Z.G. Zhu 《Journal of Non》2009,355(34-36):1687-1692
Using ab initio molecular dynamics simulations, the structural and electronic properties of liquid Si15Te85 and Si20Te80 at two temperatures were studied respectively. Compared with available experimental data, the calculated structure factors are acceptable. From symmetry arguments, the calculated partial bond-angle distribution functions suggest that with increasing temperature the extensive tetrahedral network structures persist longer in liquid Si20Te80 than those do in liquid Si15Te85. Our results indicate that the local tetrahedral structure around Si atoms and the Peierls-like distorted local atomic structure around Te atoms both play important roles in the structural change of liquid Si20Te80 and Si15Te85, which also suggest that the mechanisms of the structural change upon cooling in liquid Si20Te80 and Si15Te85 are of no essential difference. The results of DOS and LDOS indicate that the variation of the dip in DOS at EF mainly results from the change of Te p orbitals.  相似文献   

11.
In the present investigation the chemical shifts of the K-absorption discontinuities of germanium and selenium have been studied in their amorphous chemical compounds Ge10Se90, Ge30Se70, Ge10Se80Te10 and Ge33.3Se40Te26.7 using a 1 m Cauchois type bent crystal (mica) X-ray spectrograph. A graph of the chemical shift ΔE in binary compounds against the effective charge q on the absorbing atoms has been plotted. This plot is helpful in determining the effective charges in ternary compounds in which they cannot be calculated theoretically.  相似文献   

12.
P. Bharathan 《Journal of Non》2011,357(18):3366-3372
We have experimentally measured the current-voltage and capacitance-voltage characteristics of Au/amorphous AsxSe1 − x (x ≤ 0.05)/Zr trilayer structures at temperatures from 4 to 295 K. The observed capacitance of structures with an amorphous AsxSe1 − x (a-AsxSe1 − x) thickness of ~ 0.4 to ~ 2.8 μm does not significantly change over the entire range of applied bias (− 5 V to 5 V), indicating that the a-AsxSe1 − x films are fully depleted and thus the structures are Mott barriers. The current-voltage (I-V) characteristics of the a-As0.03Se0.97 device at low (< 3000 V/cm) to moderate fields (3000 V/cm-10000 V/cm) follow the predictions of trap limited space charge conduction theory, as they exhibit Ohmic behavior at low fields and trap limited space charge current at moderate fields. According to the trap limited space charge current model of Lampert, the a-As0.03Se0.97 film has an effective hole mobility, Θμ (with Θ < 1), of ~ 5 × 10− 7 cm2/V-sec at 295 K. This value is similar to, but consistently lower than previously reported mobilities inferred from time of flight measurements. The current at high fields (> 104 V/cm) increases rapidly with applied field as a result of carrier emission from localized states and is consistent with transport by the Poole-Frenkel mechanism. A permanent transition to a high conductance state (~ 10− 3 S) is observed after exposure to very high electric fields (~ 4 × 105V/cm).  相似文献   

13.
From the 15 MHz ultrasound velocity (shear and longitudinal) the elastic parameters (E, G, K) have been calculated, other than the Debye temperature θm in solid Se1?xTex amorphous alloys in the temperature region containing the Tg range. Assisted by results of optical spectroscopy and by shear viscosity tests an analysis has been carried out to explain the role of tellurium in these alloys. We find a double action played through the covalent bonds in the inside of the copolymeric chains and between them by means of the Van der Waals forces. Other results, from the literature, have been taken into account to support our hypothesis.  相似文献   

14.
J. Rocca  M. Erazú  M. Fontana  B. Arcondo 《Journal of Non》2009,355(37-42):2068-2073
One of most important properties of some tellurium-based chalcogenide glasses is the optical and electrical switching between two states: the glass and the crystalline state. The understanding in these systems of the glass to crystal transition and its transformation kinetics is essential for their application in non-volatile memories. GeTeSb and GeTe amorphous samples of compositions close to the eutectic point Ge15Te85 were obtained by rapid solidification from the liquid state employing melt spinning technique. The glass forming ability of this system, for this cooling technique, is restricted to a small composition range nearby the binary eutectic. The crystallization kinetics of the samples was studied by means of differential scanning calorimetry (DSC) under both isothermal and continuous heating regimes. The quenched samples and the crystallization products have been characterized by X-ray diffraction with Cu(Kα) radiation. The crystallization temperature, activation energy, crystallization enthalpy and the dependence of these properties on concentration are reported. The crystallization study of Ge15Te85 glasses shows: a primary crystallization of Te superimposed with a secondary crystallization of GeTe. The addition of Sb (5 at.%) to the eutectic point Ge15Te85 modifies this behavior: the crystallization of Ge13Sb5Te82 glasses consists on the crystallization of Te and Ge2Sb2Te5. The crystallization of the ternary glasses was modeled.  相似文献   

15.
《Journal of Non》2006,352(30-31):3230-3235
The present paper reports the dc conductivity measurements at high electric fields in vacuum evaporated amorphous thin films of (Ge20Se80)1−xSnx glassy alloys where 0 < x < 1. Current–voltage (IV) characteristics have been measured at various fixed temperatures. In these samples, at low electric fields, ohmic behavior is observed. However, at high electric fields (E  104 V/cm), non-ohmic behavior is observed. An analysis of the experimental data confirms the presence of space charge limited conduction (SCLC) in the glassy materials studied in the present case. From the fitting of the data to the theory of SCLC, the density of defect states (DOS) near Fermi level is calculated. These results show that the effect of incorporation of Sn in the Ge–Se system is quite different at its low and high concentration. This peculiar role of third element Sn as an impurity in the pure binary Ge20Se80 glassy alloy is also discussed.  相似文献   

16.
Differential scanning calorimetry and dc conductivity measurements were used to study structural relaxation of Se70Te30 glass. A single set of Tool-Narayanaswamy-Moynihan (TNM) parameters was obtained from the curve-fitting procedure. The value of apparent activation energy Δh∗ was further confirmed by two non-fitting techniques. Results of the Δh∗ evaluation from the Tg dependence on cooling rate are discussed in terms of how the Tf determination might be influenced by the material’s structure type and by the interference of the crystallization process.  相似文献   

17.
X-ray investigations of glassy tellurium-silicon alloys (Si content 10–40 at%) are described. Alloys with 13 to 27 at% Si were obtained in bulk form, non-crystalline samples with 10, 30, 33, 36 and 40 at% Si were obtained by rapid quenching from the melt by the splat-cooling technique. The interference functions and the radial distribution functions of all alloys show a great similarity. However, the positions of the maxima of the pair distribution function decrease continuously with growing Si content and lead to values which are similar to atomic distances in crystalline Te and Si2Te3. The areas of the first two peaks of the RDF, F1 (rougnly 2) and F2 (roughly 12), are compared with calculated areas derived from different structural models which are based on the short-range order in crystalline Te with a chain structure and in Si2Te3 with a tetrahedron configuration. An interstitial model with Si atoms in holes of Te chains and a random substitution model, where the Te atoms and the Si atoms have the same short-range order, both show a concentration dependence of the areas F1 contrary to the experimental values. A structural model which assumes the tetrahedron configuration of Si2Te3 for Si atoms (coordination number NSi = 4) and a coordination number NTe = 2 for Te atoms can describe the short-range order of glassy TeSi alloys in the whole investigated concentration range with 10–40 at% Si.  相似文献   

18.
The thermal, structural electrical properties of bulk glasses based on GeTe compositions near the binary eutectic, Ge15Te85, are studied. Information regarding the non-crystalline state and the transformation from the non-crystalline to the crystalline state is reported. The particular alloys studied represent binary (Ge17Te83), ternary (Ge15Te80As5) and quaternary (Ge15Te81Sb2S2) compositions. Structural information is obtained using X-ray diffraction techniques and density measurements. Thermal data are reported from differential scanning calorimetry (DSC), thermogravimetry (TGA) and mass spectrometry results. The electrical conductivity is measured as a function of temperature and, on the ‘as-prepared’ glasses, shows semi-conducting behavior with activation energies, E, of 0.43–0.48 eV. DSC, TGA and X-ray powder diffraction patterns indicate the samples crystallize as Te and GeTe in a two-step process, and melt at the binary eutectic temperature. The binary vaporizes as Te and GeTe in a two-step process. GeTeAs and GeTeSbS vaporize by essentially the same mechanism, with As evaporating (<300°C) before the Te, and Sb and S evaporating (420–480°C) after the Te but before GeTe. The results show that the properties of the bulk ‘as-prepared’ glasses are strikingly similar. Thermally-induced changes in the structural and electrical properties of bulk samples have been examined following a series of anneals (5 h, vacuum) at temperatures from 111°C to 190°C (glass transition temperature ?125?133°C; crystallization temperature ?206?228°C as determined by DSC). DSC, TGA and mass spectrometry results have been correlated to electrical and structural changes. Results show that crystalline Te nucleates at the surface and forms a conductive surface layer. The conductivity of this surface layer is nearly temperature independent with E ≈ 10?2 eV for all three alloys. Crystallization and the associated electrically conductive regions extend into the bulk material with further annealing. In these disordered alloys the additives As and Sb + S apparently do not act as electrical dopants in the sense of affecting the conductivity activation energy. The additives Sb + S however do retard crystallization of GeTe. The secondary crystallization product, GeTe, apparently changes the conduction mechanism to either a metallic or degenerate semiconductor type behavior.  相似文献   

19.
X-ray powder diffraction data were obtained for Cu3In5Se9 and Cu3Te9, which were found to crystallize in orthorhombic and tetragonal systems, respectively. The electrical resistivities and Hall mobilities of these compounds were investigated in the temperature range 35–475 K. Cu3In5Se9, was identified to be n-type with a room temperature resistivity of 3 × 103 Ω·cm which decreases with increasing temperature. For T < 65 K impurity activation energy of 0.03 eV and for T > 350 K onset of intrinsic conduction yielding a band gap energy of 0.99eV were detected. The neutral impurity scattering was found to dominate at low temperatures, while in the high temperature region thermally activated mobility was observed. Cu3In5Te9 exhibits p-type conduction with a room temperature resistivity of 8.5 × 10−3 Ω·cm decreasing sharply above 400 K and yielding an impurity ionization energy of 0.13 eV. The temperature dependence of mobility indicates the presence of lattice and ionized impuritiy scattering mechanisms above and below 160 K, respectively.  相似文献   

20.
The atomic structures of amorphous As40Se(60?x)Tex (x = 10 and 15) and As40Se60 glasses have been investigated by neutron and high energy X-ray diffraction methods. The two datasets were modeled simultaneously by reverse Monte Carlo (RMC) simulation technique. The RMC simulations revealed a glassy network built-up from As(Se, Te)3 pyramids in which Te atoms substitute Se atoms. The As―Se correlation function shows a strong and sharp first peak at 2.4 Å and two broad and much less intense peaks at 3.7 and 5.6 Å, related to 1st, 2nd and 3rd neighbor distances of the As―Se bonds, respectively. They are an evidence for existence of short and medium ordering in the studied glasses. The similarity of ΘTe―As―Te and ΘSe―As―Se bond distributions suggests that Te atoms have a similar role in the structure formation as Se atoms. The FTIR spectra analysis revealed impurity bonds of Se―H, As―O, Se―O, and Te―O in the glasses which contributed to enhanced absorption in visible spectral range. From the ellipsometric data analysis the optical constants and the energetic parameters of the studied glasses were established. The compositional variation of these parameters is explained in terms of chemical bonds formation and change in the density of charged defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号