首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solid particles are adsorbed at interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the microstructure on the particle surface affects their adsorption properties. The physical properties of the interface adsorbing a particle will be described by taking into account the surface roughness due to the microstructure. The microstructure on the surface changes drastically the wettability and the equilibrium position of the adsorbed particle. Therefore, the contact angle of the particle at the three-phase contact line shifts with the particle surface area, because the surface roughness enhances the interfacial properties of the particle surface. Moreover, the range of the interfacial tensions at which the particle is adsorbed becomes narrower with the increase of the surface roughness. The effect of the particle shape on the adsorption properties is also studied. In the case of disk-shaped particles, the energy changes discontinuously when the plane surface of the particle contacts the liquid-liquid interface. The adsorbing position does not change with the surface roughness. The orientation of a parallelepiped particle at the liquid-liquid interface is governed by the aspect ratio and the surface area of the particle. On the other hand, the particle which is partially covered with the microstructured surface is adsorbed firmly at the interface in an oriented state. We should consider not only the interfacial tensions but also the surface structure and the particle shape to control the adsorption behavior of the particle.  相似文献   

2.
Interfaces adsorbing solid particles have recently attracted great attentions in the field of materials science, because they are useful as templates of well-ordered particle arrays or of microstructured hollow spheres. The solid particles are adsorbed at the interfaces and form self-assembled structures when the particles have suitable wettability to both fluids. Here, we show theoretically how the microstructure on the particle surface affects their adsorption properties. The physical properties of the interface adsorbing a particle will be described with consideration for surface area magnification due to the microstructure. The microstructure on the surface changes drastically the wettability and the equilibrium position of the adsorbed particle and prevents the particle from adsorption at the interface. The range of the interfacial tensions at which the particle is adsorbed becomes narrower with the increase of the magnification. On the other hand, the particle which is partially covered with the microstructured surface is adsorbed firmly at the interface in an oriented state. We should consider not only the interfacial tensions but also the surface structure to control the adsorption behavior of the particle.  相似文献   

3.
Emulsions stabilized through the adsorption of colloidal particles at the liquid-liquid interface have long been used and investigated in a number of different applications. The interfacial adsorption of particles can be induced by adjusting the particle wetting behavior in the liquid media. Here, we report a new approach to prepare stable oil-in-water emulsions by tailoring the wetting behavior of colloidal particles in water using short amphiphilic molecules. We illustrate the method using hydrophilic metal oxide particles initially dispersed in the aqueous phase. The wettability of such particles in water is reduced by an in situ surface hydrophobization that induces particle adsorption at oil-water interfaces. We evaluate the conditions required for particle adsorption at the liquid-liquid interface and discuss the effect of the emulsion initial composition on the final microstructure of oil-water mixtures containing high concentrations of alumina particles modified with short carboxylic acids. This new approach for emulsion preparation can be easily applied to a variety of other metal oxide particles.  相似文献   

4.
As a simple model for a Pickering emulsion droplet, we consider the adsorption of spherical particles to a spherical liquid-liquid interface in order to investigate the curvature effect on the particle adsorption. By taking into account both the surface and the volume energies due to the presence of a particle, we show that the equilibrium contact angle is determined by the classical Young's equation although the adsorption energy depends on the curvature. We also calculate the partitioning of the colloidal particles among the two liquids and the interface. The distribution of colloidal particles is expressed in terms of the interfacial curvature as well as the relative wettability of the particle.  相似文献   

5.
Quantifying the role of surface shape and physicochemical surface conditions on the interfacial reactivity of particles and substrates is fundamental to a multitude of natural and engineered surface adsorption phenomena. We consider continuum/jump regime adsorption at the gas or liquid interface of arbitrary regular solid surfaces with heterogeneous surface features. In particular, the 3-D boundary value problem (based on Laplace's diffusion equation) is converted into a 2-D integral equation for the adsorbate concentration at the particle surface. This accommodates numerical descretization via the implementation of 2-D Gauss-Legendre quadratures on an arrangement of high- and low-adsorption patch trace sites constructed to completely cover the particle surface. A generalized computer program is developed to solve the resulting linear algebra problem for the unkown local adsorption current densities. We investigate the role of various distributions of high- and low-adsorption sites for a generalized class of spheres which includes the DNA-like shaped twisted spheres. The biological implications of the role of surface curvature on interfacial adsorption/reactivity at particle surfaces are also discussed. Copyright 2001 Academic Press.  相似文献   

6.
《Colloids and Surfaces》1993,69(4):203-208
Contact angle kinetics of sessile drops of albumin solution on hydrophilic acetal and hydrophobic FC 721 surfaces were measured using axisymmetric drop shape analysis. Young's equation is used to calculate the solid/liquid interfacial tension from measured contact angles and surface tensions as a function of time. The change in solid/liquid interfacial tension is a result of protein adsorption. It indicates that at the hydrophilic acetal surface the albumin molecules, interact only weakly, whereas the interaction with the hydrophobic FC 721 surface is quite strong.  相似文献   

7.
We report measured and calculated oil-ionic liquid, water-ionic liquid and oil-water contact angles on silica surfaces which have been hydrophobised to different extents by silanisation. Based on the idea that the contact angle formed by a liquid-liquid interface with a particle adsorbed at that interface is a key determinant of the strength of particle adsorption and the tendency of the adsorbed particle film to curve, we correlate the contact angle data with the phase inversion points and stabilities of the corresponding particle-stabilised emulsions.  相似文献   

8.
We investigate the adsorption of a spherical Janus particle to a spherically curved liquid-liquid interface. We show that the equilibrium contact angle is determined by the geometry of the particle, its wettability, and also the interfacial curvature. In contrast with a homogeneous particle, there is a preferred interfacial curvature (spontaneous curvature) due to the Janus particle when the particle satisfies certain conditions.  相似文献   

9.
Abstract

Due to the important use of pesticide formulation, it is necessary to make it clear how ionic surfactant effect the wettability at leaf surface. In this work, we used the sessile drop method to study the wettability of SDS and DTAB on wheat leaf surfaces at different leaf stages, and reveal the relationship between surfactants structures and leaf stages of wheat leaf surfaces on wettability behavior. Results showed that few surfactant molecules adsorbed at the interface at low concentrations. With the concentration increased, the surfactant replaced the air layer partially within the nano/micro structure of leaf surfaces. When the concentration exceeded to CMC, the adsorption of surfactant molecules was saturated at both air-liquid interface and solid-liquid interface, the wetting state was still the transitional state between Cassie-Baxter’s and Wenzel’s state. In all concentrations, the adhesional tension and surface tension showed the linear relationship and the slope values were all below ?1, suggesting there were more surfactant molecules adsorbed at the solid-liquid interface than the liquid-air interface. As SDS is a common wetting agent and DTAB is a common fungicide in agrochemical, this study will provide potential guidance in practical application of pesticide solutions in leaf surface wetting.  相似文献   

10.
Wettability was controlled in a rational manner by individually and simultaneously manipulating surface topography and surface chemical structure. The first stage of this research involved the adsorption of charged submicrometer polystyrene latex particles to oppositely charged poly(ethylene terephthalate) (PET) film samples to form surfaces with different topographies/roughness; adsorption time, solution pH, solution ionic strength, latex particle size, and substrate charge density are external variables that were controlled. The introduction of discrete functional groups to smooth and rough surfaces through organic transformations was carried out in the second stage. Amine groups (-NH(2)) and alcohol groups (-OH) were introduced onto smooth PET surfaces by amidation with poly(allylamine) and adsorption with poly(vinyl alcohol) (PVOH), respectively. On latex particle adsorbed surfaces, a thin layer of gold was evaporated first to prevent particle redistribution before chemical transformation. Reactions with functionalized thiols and adsorption with PVOH on patterned gold surfaces successfully enhanced surface hydrophobicity and hydrophilicity. Particle size and biomodal particle size distribution affect both hydrophobicity and hydrophilicity. A very hydrophobic surface exhibiting water contact angles of 150 degrees /126 degrees (theta(A)/theta(R)) prepared by adsorption of 1-octadecanethiol and a hydrophilic surface with water contact angles of 18 degrees /8 degrees (theta(A)/theta(R)) prepared by adsorption of PVOH were prepared on gold-coated surfaces containing both 0.35 and 0.1 microm latex particles. The combination of surface topography and surface-chemical functionality permits wettability control over a wide range.  相似文献   

11.
The adsorption of the iron storage protein ferritin was studied by liquid tapping mode atomic force microscopy in order to obtain molecular resolution in the adsorbed layer within the aqueous environment in which the adsorption was carried out. The surface coverage and the structure of the adsorbed layer were investigated as functions of ionic strength and pH on two different charged surfaces, namely chemically modified glass slides and mixed surfactant films at the air-water interface, which were transferred to graphite substrates after adsorption. Surface coverage trends with both ionic strength and pH indicate the dominance of electrostatic effects, with the balance shifting between intermolecular repulsion and protein-surface attraction. The resulting behavior is more complex than that seen for larger colloidal particles, which appear to follow a modified random sequential adsorption model monotonically. The structure of the adsorbed layers at the solid surfaces is random, but some indication of long-range order is apparent at fluid interfaces, presumably due to the higher protein mobility at the fluid interface. Copyright 2000 Academic Press.  相似文献   

12.
This paper, which may interest not only colloid scientists and physical chemists but also applied mathematicians, completes some previous results on aqueous silicon nitride dispersions. Experimental data on adsorption from liquid solution were first obtained by a titration method and then used to derive the number of solid particles from an equilibrium constraint. To discuss the complex mechanisms affecting simultaneous solid particle aggregation and small ion adsorption at the solid/liquid interface, the Dini implicit function theorem (DT) has been applied to the equilibrium condition for a former suspension Gibbs free energy. It was able to relate the average particle number to the ion concentration adsorbed, but not to unequivocally specify their dependence on the liquid phase pH. We attempt here to model aggregation both through bulk and interfacial quantities. The generalized DT-based criterion has first been formulated in all generality, and then adopted according to a wider investigation. The results obtained confirm the original guess, i.e., to regard solid aggregation as dominated by interfacial mechanisms.  相似文献   

13.
An investigation is reported on the interfacial properties of nanometric colloidal silica dispersions in the presence of a cationic surfactant. These properties are the result of different phenomena such as the particle attachment at the interface and the surfactant adsorption at the liquid and at the particle interfaces. Since the latter strongly influences the hydrophobicity/lipophilicity of the particle, i.e., the particle affinity for the fluid interfacial environment, all those phenomena are closely correlated. The equilibrium and dynamic interfacial tensions of the liquid/air and liquid/oil interfaces have been measured as a function of the surfactant and particle concentration. The interfacial rheology of the same systems has been also investigated by measuring the dilational viscoelasticity as a function of the area perturbation frequency. These results are then crossed with the values of the surfactant adsorption on the silica particles, indirectly estimated through experiments based on the centrifugation of the dispersions. In this way it has been possible to point out the mechanisms determining the observed kinetic and equilibrium features. In particular, an important role in the mixed particle-surfactant layer reorganization is played by the Brownian transport of particles from the bulk to the interface and by the surfactant redistribution between the particle and fluid interface.  相似文献   

14.
We describe the first study on the self-assembly behavior of Janus cylinders at liquid/liquid interfaces. The Janus cylinders are characterized by a phase separation along the major axis into two hemicylinders of different wettability. The pendant drop technique and microscopic imaging were used to characterize the adsorption behavior and self-assembly of Janus cylinders at perfluorinated oil/dioxane and perfluorinated oil/dimethyl sulfoxide interfaces. According to the evolution of the interfacial tension and a series of TEM images taken during the cylinder adsorption, we will specify the characteristics of early to late stages of the Janus cylinder adsorption at a liquid-liquid interface and discuss the effect of Janus cylinder length and their concentration. We also establish that the broken symmetry of the corona leads to significantly higher interfacial activity as compared to homogeneous core-shell cylinders. The adsorption is characterized by three different adsorption stages: first, free diffusion to the interface, followed by continuous adsorption of cylinders including ordering and domain formation and, finally, additional packing with a rearrangement of domains and formation of a loose multilayer system.  相似文献   

15.
We study the effect of the particle wettability on the preferred type of emulsion stabilised solely by food colloid particles. We present results obtained with the recently developed gel trapping technique (GTT) for characterisation of wettability and surface structuring of individual food colloid particles adsorbed at air-water and oil-water interfaces. This method allows us to replicate a particle monolayer onto the surface of polydimethylsiloxane (PDMS) without altering the position of the particles. By observing the polymer surface with scanning electron microscopy (SEM), we are able to determine the contact angle of the individual particles at the initial liquid interface. We demonstrate that the GTT can be applied to fat crystal particles, calcium carbonate particles coated with stearic acid and spray-dried soy protein/calcium phosphate particles at air-water and oil-water interfaces. Subsequently, we prepare emulsions of decane and water stabilised by the same food colloid particles and correlate the wettability data obtained for these particles to the preferred type of emulsions they stabilise.  相似文献   

16.
Using positively charged plate-like layered double hydroxides (LDHs) particles as emulsifier, liquid paraffin-in-water emulsions stabilized solely by such particles are successfully prepared. The effects of the pH of LDHs aqueous dispersions on the formation and stability of the emulsions are investigated here. The properties of the LDHs dispersions at different pHs are described, including particle zeta potential, particle aggregation, particle contact angle, flow behavior of the dispersions and particle adsorption at a planar oil/water interface. The zeta potential decreases with increasing pH, leading to the aggregation of LDHs particles into large flocs. The structural strength of LDHs dispersions is enhanced by increasing pH and particle concentration. The three-phase contact angle of LDHs also increases with increasing pH, but the variation is very small. Visual observation and SEM images of the interfacial particle layers show that the adsorption behavior of LDHs particles at the planar oil/water interface is controlled by dispersion pH. We consider that the particle-particle (at the interface) and particle-interface electrostatic interactions are well controlled by adjusting the dispersion pH, leading to pH-tailored colloid adsorption. The formation of an adsorbed particle layer around the oil drops is crucial for the formation and stability of the emulsions. Emulsion stability improves with increasing pH and particle concentration because more particles are available to be adsorbed at the oil/water interface. The structural strength of LDHs dispersions and the gel-like structure of emulsions also influence the stability of the emulsions, but they are not necessary for the formation of emulsions. The emulsions cannot be demulsified by adjusting emulsion pH due to the irreversible adsorption of LDHs particles at the oil/water interface. TEM images of the emulsion drops show that a thick particle layer forms around the oil drops, confirming that Pickering emulsions are stabilized by the adsorbed particle layers. The thick adsorbed particle layer may be composed of a stable inner particle layer which is in direct contact with the oil phase and a relatively unstable outer particle layer surrounding the inner layer.  相似文献   

17.
NMR methods provide chemically selective tools, particularly suitable to detect the molecular environment of molecular species in micro-heterogeneous materials. They are consequently applied to solve many questions in colloid science. The present review covers NMR studies of molecular adsorption onto particle surfaces as well as sorption into colloidal particles. Various methods ranging from liquid or solid state spectral analysis over spin relaxation to pulsed field gradient diffusion NMR have been employed in this field, monitoring either the chemical environment or the restricted dynamics of adsorbed or encapsulated guest molecules. Adsorption systems include surfactant layers, stabilizing ligands, small molecules, polymer layers or polyelectrolyte multilayers at the surface of various types of particles. Sorption into colloidal particles and detection of their position in specific compartments of the colloid are particularly relevant in systems employed as colloidal carriers, such as micelles, vesicles, or hollow polymeric capsules. With guest molecules considered as model compounds for drugs these studies have large relevance for the development of nanoparticle drug delivery systems.  相似文献   

18.
This work characterizes the adsorption, structure, and binding mechanism of oxygenated organic species from cyclohexane solution at the liquid/solid interface of optically flat alumina-supported palladium nanoparticle surfaces prepared by atomic layer deposition (ALD). The surface-specific nonlinear optical vibrational spectroscopy, sum-frequency generation (SFG), was used as a probe for adsorption and interfacial molecular structure. 1-Hexanoic acid is an overoxidation product and possible catalyst poison for the aerobic heterogeneous oxidation of 1-hexanol at the liquid/solid interface of Pd/Al(2)O(3) catalysts. Single component and competitive adsorption experiments show that 1-hexanoic acid adsorbs to both ALD-prepared alumina surfaces and alumina surfaces with palladium nanoparticles, that were also prepared by ALD, more strongly than does 1-hexanol. Furthermore, 1-hexanoic acid adsorbs with conformational order on ALD-prepared alumina surfaces, but on surfaces with palladium particles the adsorbates exhibit relative disorder at low surface coverage and become more ordered, on average, at higher surface coverage. Although significant differences in binding constant were not observed between surfaces with and without palladium nanoparticles, the palladium particles play an apparent role in controlling adsorbate structures. The disordered adsorption of 1-hexanoic acid most likely occurs on the alumina support, and probably results from modification of binding sites on the alumina, adjacent to the particles. In addition to providing insight on the possibility of catalyst poisoning by the overoxidation product and characterizing changes in its structure that result in only small adsorption energy changes, this work represents a step toward using surface science techniques that bridge the complexity gap between fundamental studies and realistic catalyst models.  相似文献   

19.
Particle-stabilized dispersions such as emulsions, foams and bubbles are catching increasing attentions across a number of research areas. The adsorption mechanism and role of these colloidal particles in stabilizing the oil-water or gas-water interfaces and how these particles interact at interfaces are vital to the practical use of these dispersion systems. Although there have been intensive investigations, problems associated with the stabilization mechanisms and particle-particle interactions at interfaces still remain to explore. In this paper, we first systematically review the historical understanding of particle-stabilized emulsions or bubbles and then give an overview of the most important and well-established progress in the understanding of particle-stabilized systems, including emulsions, foams and liquid marbles. The particle-adsorption phenomena have long been realized and been discussed in academic paper for more than one century and a quantitative model was proposed in the early 1980s. The theory can successfully explain the adsorption of solid particles onto interface from energy reduction approaches. The stability of emulsions and foams can be readily correlated to the wettability of the particles towards the two phases. And extensive researches on emulsion stability and various strategies have been developed to prepared dispersion systems with a certain trigger such as pH and temperature. After that, we discuss recent development of the interactions between particles when they are trapped at the interface and highlight open questions in this field. There exists a huge gap between theoretical approaches and experimental results on the interactions of particles adsorbed at interfaces due to demanding experimental devices and skills. In practice, it is customary to use flat surfaces/interfaces as model surfaces to investigate the particle-particle at interfaces although most of the time interfaces are produced with a certain curvature. It is shown that the introduction of particles onto interfaces can generate charges at the interfaces which could possibly account for the long range electrostatic interactions. Finally, we illustrate that particle-stabilized dispersions have been found wide applications in many fields and applications such as microcapsules, food, biomedical carriers, and dry water. One of the most investigated areas is the microencapsulation of actives based on Pickering emulsion templates. The particles adsorbed at the interface can serve as interfacial stabilizers as well as constituting components of shells of colloidal microcapsules. Emulsions stabilized by solid particles derived from natural and bio-related sources are promising platforms to be applied in food related industries. Emulsion systems stabilized by solid particles of the w/w (water-in-water) feature are discussed. This special type of emulsion is attracting increasing attentions due to their all water features. Besides of oil-water interface, particle stabilized air-water interface share similar stabilization mechanism and several applications reported in the literature are subsequently discussed. We hope that this paper can encourage more scientists to engage in the studies of particle-stabilized interfaces and more novel applications can be proposed based on this mechanism  相似文献   

20.
The wetting behavior of solid surfaces can be altered dramatically by introducing surface roughness on the nanometer scale. Some of nature's most fascinating wetting phenomena are associated with surface roughness; they have inspired both fundamental research and the adoption of surface roughness as a design parameter for man-made functional coatings. So far the attention has focused primarily on macroscopic surfaces, but one should expect the wetting properties of colloidal particles to be strongly affected by roughness, too. Particle wettability, in turn, is a key parameter for the adsorption of particles at liquid interfaces and for the industrially important use of particles as emulsion stabilizers; yet, the consequence of particle roughness for emulsion stability remains poorly understood. In order to investigate the matter systematically, we have developed a surface treatment, applicable to micrometer-sized particles and macroscopic surfaces alike, that produces surface coatings with finely tunable nanoscale roughness and identical surface chemistry. Coatings with different degrees of roughness were characterized with regard to their morphology, charging, and wetting properties, and the results were correlated with the stability of emulsions prepared with coated particles of different roughness. We find that the maximum capillary pressure, a metric of the emulsions' resistance to droplet coalescence, varies significantly and in a nonmonotonic fashion with particle roughness. Surface topography and contact angle hysteresis suggest that particle roughness benefits the stability of our emulsions as long as wetting occurs homogeneously (Wenzel regime), whereas the transition toward heterogeneous wetting (Cassie-Baxter regime) is associated with a loss of stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号