首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of temperature and mobile phase on LC chromatographic separation of phenolic antioxidants on zirconia-based columns were investigated. Unlike silica-based materials, zirconia columns show excellent thermal stability over a wide range of temperatures and enable high-temperature separations. Enthalpic and entropic contributions to the retention of phenolic compounds on ZR-Carbon and ZR-Carbon C18 columns were determined from retention versus temperature plots in order to elucidate the retention mechanism of sample compounds over the temperature range up to 14 degrees C. High-temperature liquid chromatography on ZR-Carbon columns was used for comprehensive LC x LC two-dimensional separation systems based on the different selectivity of a Zorbax SB micro-column used in the first dimension and a ZR-Carbon column used in the second dimension. Two-dimensional LC x LC systems employing a setup with two alternately operated parallel ZR-Carbon columns in the second dimension were used for the analysis of phenolic antioxidants in beer and wine samples.  相似文献   

2.
A method using zirconia-based column high-performance liquid chromatography (HPLC) interfaced with an atmospheric pressure photoionization (APPI) source and a tandem mass spectrometer (MS/MS) was developed for the quantitative determination of new chemical entities in rat plasma in support of pharmacokinetics studies. The ionization suppression resulting from endogenous components of the biological matrices on the quantitative zirconia-based column HPLC/APPI-MS/MS method was investigated using the post-column infusion technique. The analytical results for 'rapid rat pharmacokinetics' for 12 drug discovery compounds, obtained by both silica-based phase (S-phase) and zirconia-based phase (Z-phase) chromatographic separation, are in good agreement in terms of accuracy. The application of a Z-phase column for high-temperature fast HPLC/MS/MS methods was explored to reduce the analysis time from 3 min to 30 s for column temperatures of 25-110 degrees C, respectively. The chromatographic retention times and peak responses of all analytes were found to be reproducible under high-temperature conditions following 100 continuous injections, with %CV less than 0.4 and 5, respectively.  相似文献   

3.
A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.  相似文献   

4.
Effective heat dissipation is critical for reproducible and efficient separations in electrically driven separation systems. Flow rate, retention kinetics, and analyte diffusion rates are some of the characteristics that are affected by variation in the temperature of the mobile phase inside the column. In this study, we examine the issue of Joule heating in packed capillary columns used in capillary electrochromatography (CEC). As almost all commonly used CEC packings are poor thermal conductors, it is assumed that the packing particles do not conduct heat and heat transfer is solely through the mobile phase flowing through the system. The electrical conductivity of various mobile phases was measured at different temperatures by a conductivity meter and the temperature coefficient for each mobile phase was calculated. This was followed by measurement of the electrical current at several applied voltages to calculate the conductivity of the solution within the column as a function of the applied voltage. An overall increase in the conductivity is attributed to Joule heating within the column, while a constant conductivity means good heat dissipation. A plot of conductivity versus applied voltage was used as the indicator of poor heat dissipation. Using theories that have been proposed earlier for modeling of Joule heating effects in capillary electrophoresis (CE), we estimated the temperature within CEC columns. Under mobile and stationary phase conditions typically used in CEC, heat dissipation was found to be not always efficient. Elevated temperatures within the columns in excess of 23 degrees C above ambient temperature were calculated for packed columns, and about 35 degrees C for an open column, under a given set of conditions. The results agree with recently published experimental findings with nuclear magnetic resonance (NMR) thermometry, and Raman spectroscopic measurements.  相似文献   

5.
Micellar liquid chromatography (MLC) remains hindered by reduced chromatographic efficiency compared to reversed phase liquid chromatography (RPLC) using hydro-organic mobile phases. The reduced efficiency has been partially explained by the adsorption of surfactant monomers onto the stationary phase, resulting in a slow mass transfer of the analyte within the interfacial region of the mobile phase and stationary phase. Using an array of 12 columns, the effects of various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, superficially porous and perfluorinated, were evaluated to determine their impact on efficiency in MLC. Additionally, each stationary phase was evaluated using 1-propanol and 1-butanol as separate micellar mobile phase alcohol additives, with several columns also evaluated using 1-pentanol. A simplified equation for calculation of A' and C' terms from reduced plate height (h) versus reduced velocity (nu) plots was used to compare the efficiency data obtained with the different columns and mobile phases. Analyte diffusion coefficients needed for the h versus nu plots were determined by the Taylor-Aris dispersion technique. The use of a short alkyl chain, wide-pore silica column, specifically, Nucleosil C4, 1000A, was shown to have the most improved efficiency when using a micellar mobile phase compared to a hydro-organic mobile phase for all columns evaluated. The use of 1-propanol was also shown to provide improved efficiency over 1-butanol or 1-pentanol in most cases. In a second series of experiments, column temperatures were varied from 40 to 70 degrees C to determine the effect of temperature on efficiency for a subset of the stationary phases. Efficiency improvements ranging from 9% for a Chromegabond C8 column to 58% for a Zorbax ODS column were observed over the temperature range. Based on these observed improvements, higher column temperatures may often yield significant gains in column efficiency, assuming the column is thermally stable.  相似文献   

6.
Subcritical water has been recently employed as the mobile phase to eliminate the use of organic solvents in reversed-phase liquid chromatography. Although the influence of temperature on retention in subcritical water chromatography has been reported, the temperature effect on peak width and column efficiency has not yet been quantitatively studied. In this work, several polar and chlorinated compounds are separated using pure subcritical water on Zorbax RX-C8, PRP-1 (polystyrene-divinylbenzene), Hypersil ODS, and ZirChrom-polybutadiene columns. Isothermal separations are performed at temperatures ranging from 60 degrees C to 160 degrees C. The retention time and peak width of analytes are reduced with increasing temperature. However, the column efficiency is either improved or almost unchanged with the increasing temperature in the low-temperature range (lower than the 100 degrees C to 120 degrees C range), but it is decreased when temperature is further raised in the high-temperature range (higher than the 100 degrees C to 120 degrees C range). Therefore, a maximum in column efficiency is obtained at temperatures within the 100 degrees C to 120 degrees C range in most cases.  相似文献   

7.
Summary The temperature-dependent separation of bryostatins by HPLC was examined on an octadecyl bonded stationary phase, using column temperatures between 0 and 40°C and mobile phase temperatures from 0 to 25°C. The retention time and resolution of bryostatins changed drastically and separation improved with decreasing temperature. A column temperature of less than 5°C and a mobile phase temperature of less than 15°C is recommended for a good resolution of bryostatins for routine work.  相似文献   

8.
Low‐temperature high‐performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at –35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low‐temperature high‐performance liquid chromatography at temperatures from –35 to –5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl‐silica (C18) column provided reversed phase mode separation, and a bare silica‐gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately –15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high‐performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.  相似文献   

9.
Jiang M  Qin F  Xiong Z  Zhang S  Pan L  Li F 《色谱》2011,29(11):1137-1140
以纤维素三-(3,5-二甲基苯基氨基甲酸酯)为手性固定相(Lux Cellulose-1),建立了在正相色谱条件下直接分离盐酸川丁特罗对映体的高效液相色谱法。考察了乙醇、异丙醇等有机改性剂,三氟乙酸、二乙胺等流动相添加剂和柱温对对映体分离的影响。结果显示,酸性和碱性添加剂对对映体分离的影响最为显著: 添加二乙胺时两对映体无分离趋势;添加三氟乙酸时对映体保留强,且分离趋势明显;而同时添加三氟乙酸和二乙胺则两对映体分离显著改善,分离度可达4.0。优化后的色谱条件: 色谱柱为Lux Cellulose-1手性柱(250 mm×4.6 mm, 5 μm),流动相为正庚烷-乙醇-三氟乙酸-二乙胺(88:12:0.3:0.05, v/v/v/v),流速为1.0 mL/min,紫外检测波长为246 nm,柱温为25 ℃。该方法简便,快速,可用于左旋盐酸川丁特罗原料中右旋异构体杂质的检查。  相似文献   

10.
High-temperature liquid chromatography (HTLC), with a superheated water mobile phase, has been shown to be a feasible replacement for medium-polarity acetonitrile-water mixtures as an eluent in reversed-phase HPLC. Instrumental parameters of flow-rate, injection volume and mobile phase preheating were shown to have significant effects on the quality of the chromatographic peaks. The selectivity and retention patterns of testosterone and several related compounds were investigated on a porous zirconia, polybutadiene-coated column at temperatures up to 200 degrees C and compared with that of a porous silica, octadecylsilane-coated column and the zirconia column under traditional reversed-phase conditions of an acetonitrile-water mobile phase at 40 degrees C. The selectivity differences observed for testosterone and related compounds show that the separation mechanisms are complementary and unique selectivity is obtained with the zirconia column under HTLC conditions.  相似文献   

11.
The influence of temperature on retention and separation of estrogens, progesterone derivatives and beta-cyclodextrin in reversed-phase high-performance liquid chromatography has been studied. Steroids were detected using direct UV detection at 240 and 280 nm. Detection of beta-cyclodextrin was achieved using a post-column indirect photometric method. Chromatographic experiments were performed using an acetonitrile-water mobile phase (30%, v/v) and a wide range of column temperatures from 0 to 80 degrees C with 20 degrees C steps. Linear Van't Hoff plots were observed for steroids and beta-cyclodextrin when an unmodified binary mobile phase was applied. The retention of steroids was strongly influenced by temperature when the mobile phase was modified with beta-cyclodextrin at a concentration of 12 mM. Particularly, for 17beta-estradiol and 20alpha-hydroxyprogesterone a strong deviation from the linear Van't Hoff plots and a remarkable affinity for beta-cyclodextrin was observed. Polynomial regression calculations were performed to fit the set of experimental data points. Using third-order polynomial equations, minimum separation factor values (alphamin) were calculated for temperatures from -10 to + 100 degrees C with 1 degrees C steps. The best chromatographic conditions for separation of multicomponent samples were chosen. A possible retention mechanism for solutes in the presence of macrocyclic additives is discussed. The results presented describe the role of temperature in high-performance liquid chromatography systems in which the mobile phase is modified with an inclusion agent.  相似文献   

12.
The normal phase HPLC behavior of a bare zirconia column was studied at temperatures up to 200 °C using a hexane mobile phase. The use of elevated column temperatures significantly decreased the retention of twenty five aromatic model compounds according to the van't Hoff equation (>30-fold decrease for some compounds). Large improvements in peak shape, efficiency (>2.2-fold), aromatic group-type selectivity, and column re-equilibration times (>5-fold) were obtained at elevated temperatures. The thermal decomposition of two polar nitrogen compounds (indole and carbazole) was observed in a hexane/dichloromethane mobile phase at temperatures greater than 100 °C. The first order decomposition of carbazole was studied in further detail.  相似文献   

13.
The use of high temperatures in liquid chromatography allows for the use of a purely aqueous mobile phase. At elevated temperatures water possesses many of the characteristics of organic solvents in terms of eluotropic strength, as well as having a lower viscosity. A model is developed, based on data obtained using a range of model drugs, which demonstrates the relationship between temperature, flow and pressure. Experimental data from different column types, at temperatures from 40 degrees C to 180 degrees C, is presented which matches well with the predicted data from the model.  相似文献   

14.
Abstract

Effects of column temperature on the column efficiency, retention time and stability of analytes were studied in microcolumn size-exclusion chromatography. Larger theoretical plates were achieved at column temperatures betwen 70 and 100 °C. In the constant-flow mode the retention time of analytes decreased with increasing column temperature, which was due mainly to thermal expansion of the mobile phase. When the column temperature was around or higher than the critical temperature of the mobile phase, the retention times of the analytes observed under supercritical pressure conditions still indicated dominancy of the size-exclusion mechanism, while another retention mechanism was involved under subcritical pressure conditions. In the case of the analysis of saccharides, the column temperature should be lower than 100 °C because oligosaccharides were decomposed at higher temperatures.  相似文献   

15.
Ethylammonium formate (EAF), an inexpensive and easily synthesized room-temperature ionic liquid, acts like a conventional organic solvent for reversed-phase liquid chromatography (LC). In this report, the use of standard ion-pair reagents with this ionic liquid LC mobile phase and a polystyrene-divinylbenzene PRP-1 column is explored. Starting with the column equilibrated with a methanol mobile phase, the required equilibration time of the column by the EAF ion-pair mobile phase is determined by the plate number profile. Chromatograms of six aromatic carboxylic acids, with either methanol or EAF as the mobile phase, at room temperature (in the absence of an ion-pairing agent) lack resolution with significant peak overlap of nitro-substituted benzoic acids. The addition of 30mM tetrabutylammonium ion to the EAF or methanol mobile phase provides baseline resolution for all peaks in approximately 10 min. Analogous studies using a mixture of four aromatic amines, including protonated tyramine, diphenhydramine, and neutral nitroanilines in the absence or presence of 30mM sodium dodecylsulfate (SDS) in the mobile phase are similar to those for the aromatic acids, indicating baseline resolution with only the ion-pair reagent. Raising the column temperature to 55 degrees C improves the plate count by a factor of approximately 1.2 when using the EAF mobile phase. The retention factor profiles for either the carboxylic acids or the amines, as a function of the organic modifier percentage or ion-pair reagent concentration, are similar for both EAF and methanol. The polymerized acyl monoglycinate surfactant, poly(sodium-N-undecenoyl glycinate), is used for the first time as an LC ion-interaction reagent and is about as effective as SDS for the resolution of organic amines.  相似文献   

16.
The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.  相似文献   

17.
Abstract

Increased resolution of steroid mixtures was found in high performance liquid chromatography of steroids at subambient temperatures. With aqueous mobile phase using a reversed phase column it was not possible to decrease temperatures below ?10°C due to increased viscosity. This report describes further increase in resolution at ?50°C using a non-aqueous mobile phase for the separation of steroids. Retention times were shorter several fold while resolution was improved.  相似文献   

18.
Temperature was investigated as active parameter in the liquid chromatography (LC) analysis of octylphenol ethoxylates. Significant differences in selectivity were observed when the oligomers were analyzed by reversed phase LC (RPLC) on silica-, zirconia- and polystyrene/divinylbenzene based stationary phases at low (ambient), medium and elevated temperature with acetonitrile/water as mobile phase. As ascertained by LC-mass spectroscopy (MS), in most cases the elution order of the oligomers was completely reversed comparing ambient and high temperature separations. On a graphitized carbon type column, the selectivity remained unchanged, regardless the analysis temperature. Also in normal phase LC, the elution order remained unaffected by temperature variations both for acetonitrile/water and methanol/water mixtures as mobile phase. Surprisingly, when reversed phase LC on a octadecylsilicagel column at different temperatures was repeated with methanol instead of acetonitrile as mobile phase ingredient, the reversal of elution order did not take place. Results are evaluated in terms of thermodynamic parameters.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic method is developed and validated for the quantitative determination of talinolol and to characterize its degradation products. A very good resolution between peaks is achieved using a C18 column at 40°C. The mobile phase comprises of a mixture of acetonitrile and potassium dihydrogen orthophosphate buffer (pH 4.4) in the ratio of 27:73 (v/v). The method is validated with respect to linearity, accuracy, precision, robustness, and forced degradation studies, which further proved the stability indicating power. During the forced degradation studies, talinolol is observed to be labile to hydrolytic stress and thermal stress (in the solution form). However, it is stable to the oxidative, photolytic, and thermal stress (in the solid form). The degraded products formed are investigated by electrospray ionization (ESI), time-of-flight mass spectrometry, nuclear magnetic resonance, and infrared spectroscopy. A possible degradation pathway is outlined based on the results. The method is found to be sensitive with a detection limit of 0.125 μg/mL and a quantitation limit of 0.378 μg/mL. The method is also demonstrated to be robust, as it is resistant to small variations of chromatographic variables such as pH, mobile phase composition, flow rate, and column temperature.  相似文献   

20.
Fast liquid chromatographic (LC) methods are important for a variety of applications. Reducing the particle diameter (d(p)) is the most effective way to achieve fast separations while preserving high efficiency. Since the pressure drop along a packed column is inversely proportional to the square of the particle size, when columns packed with small particles (<2 microm) are used, ultrahigh pressures (>689 bar) must be applied to overcome the resistance to mobile phase flow. Elevating the column temperature can significantly reduce the mobile phase viscosity, allowing operation at higher flow rate for the same pressure. It also leads to a decrease in retention factor. The advantage of using elevated temperatures in LC is the ability to significantly shorten separation time with minimal loss in column efficiency. Therefore, combining elevated temperature with ultrahigh pressure facilitates fast and efficient separations. In this study, C6-modified 1.0 microm nonporous silica particles were used to demonstrate fast separations using a temperature of 80 degrees C and a pressure of 2413 bar. Selected separations were completed in 30 s with efficiencies as high as 220,000 plates m(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号