首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用固体NMR 研究了高度结晶的聚氧乙烯(PEO)/六氟磷酸钠(NaPF6)(按照氧钠摩尔比8∶1 描述为PEO8∶NaPF6,分子量Mw = 1 000 和6 000 g/mol)固体聚电解质晶区链段的结构和运动.对于纯PEO 来说,晶区链段的构象交换或大角度再取向促使其13C 粉末线形从低温的非轴对称(δ332211)变成高温的轴对称线形(δ112233).通过变温的13C 粉末线形和243 K 下的二维交换谱,PEO8∶NaPF6 晶区链段同样存在大角度再取向,且开启温度也很低(~243 K)与PEO 接近.这种长程的运动使得PEO8∶NaPF6 从低温的类轴对称(δ332211)变成高温的轴对称线形(δ332211),高温线形是PEO 高温线形的翻转.与其它PEO/Na(Li)固体聚电解质不同,PEO8∶NaPF6 中晶区链段与Na+络合后仍具有很高的运动性(与纯PEO 链段的运动性相当),这种高分子链段和Na+协同运动促使Na+沿PEO 分子链轴向迁移,提高电导率.  相似文献   

2.
《Solid State Ionics》2006,177(3-4):253-256
Structural and ionic conductivity of PEO blend PEG with KI solid polymer electrolyte system is presented. The polymer PEG showed miscible with the high molecular weight polymer PEO. The X-ray diffraction patterns of PEO/PEG with KI salt indicated the decrease in the degree of crystallinity with increasing concentration of the salt. The DSC measurements of PEO/PEG:KI polymer electrolyte system showed that the melting temperature is shifted towards the lower temperature with increase of the salt concentration. Optical micrographs demonstrated that the spherulites of different sizes are present along with dark regions between the spherulites for lower salt compositions. With increase of salt concentration more amorphous regions are observed. The significance of blend is the increase of one order in ionic conductivity when compared to without blend PEO electrolyte.  相似文献   

3.
The effects of using different sources of precursor poly(ethylene oxide) (PEO) and acetonitrile solvent on the physical and electrochemical properties of lithium salt-PEO polymer electrolytes were investigated. Although no differences were found due to the use of different types of PEO, the purity of the acetonitrile solvent was found to be critical in controlling the properties of the polymer product. Acetonitrile of nominally relatively low purity produced polymer electrolytes exhibiting largely crystalline type behaviour while the use of nominally high purity solvents gave polymers which were apparently completely amorphous at temperatures above about 50°C. Transport number measurements gave values for the lithium ions of 0.4 at 132°C for the largely crystalline materials and 0.3 at 112°C for the amorphous polymers. Analysis of the acetonitrile solvents revealed the presence of water in the nominally high purity grades and it has been confirmed that water contamination is responsible for the production of the low melting temperature form of the polymer complex.  相似文献   

4.
Summary Electrical-impedance measurements have been made in the frequency range 5 Hz to10 MHz in pure poly(ethylene oxide) having a molecular weight of 600 000 from 254 K nearly up to the melting point of the crystalline phase (about 330 K). As the temperature approaches the melting point there are large increases in the realε′ and imaginaryε″ parts of the dielectric constant. The frequency dependence ofε′ is characterized by a primary-relaxation process, whose frequency increases with increasing temperature as a consequence of decrease of the average structural relaxation time. There is strong evidence that this low-frequency dispersion rises mainly from the diffusive transport of localised charge carriers rather than a purely orientation relaxation process. In addition the effects of hydrostatic pressure (0–25 Gpa) on the frequency dependences of the realε′ and imaginaryε″ parts of the dielectric constant have been measured in the same temperature range. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

5.
Solid polymer electrolytes based on high molecular weight poly(ethylene oxide) (PEO) complexed with lithium difluoro(oxalato)borate (LiDFOB) salt in various EO:Li molar ratios from 30:1 to 8:1 were prepared by using solution casting technique. Ion–polymer interaction, structural, thermal, and ionic conductivity studies have been reported by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), polarized optical microscopy (POM), differential scanning calorimeter (DSC), and impedance analysis. FTIR spectral studies suggested that the interaction of Li+ cations with the ether oxygen of PEO, where a triple peak broad band centered at 1105 cm?1, corresponds to C–O–C stretching and extreme deformation occurs. XRD, POM, and DSC indicated that the inclusion of LiDFOB salt could reduce the crystallinity of PEO. The melting temperature of PEO shifted to lower temperature side by the addition of LiDFOB. The glass transition temperature obtained for the system 10:1 was ?38.2 °C. An increase in the ionic conductivity from 3.95?×?10?9 to 3.18?×?10?5 S/cm at room temperature (23 °C) was obtained through the addition of LiDFOB to a high molecular weight PEO. In addition, the ionic conductivity of the polymer electrolyte films followed an Arrhenius relation, and the activation energy decreased with increasing LiDFOB concentration.  相似文献   

6.
7.
Polyethylene oxide–polymethyl methacrylate (PEO–PMMA) polymer blend electrolyte system complexed with silver salt having different ethylene carbonate (EC) concentrations was prepared using solution cast technique. Complex formation and change in structural and microstructural properties have been studied by X-ray diffraction, Fourier transform infrared, and scanning electron microscopy analysis. The thermal properties of polymer films have been examined by the differential scanning calorimetry technique. Addition of plasticizer is observed to lower melting temperature. Electrical response of polymer films has been measured as a function of EC concentration and temperature using complex impedance spectroscopy. Complex impedance data are used to analyze the conductivity, permittivity, and modulus formalism to understand the conduction mechanism. The temperature dependence of electrical conductivity of polymer electrolytes shows a sudden rise at the melting temperature of PEO.  相似文献   

8.
A.C. conductivity measurements on a number of lithium salt-poly(ethylene oxide) (PEO) complex polymer electrolytes have been correlated with the results of D.S.C. analysis. An enhancement in the conductivity of compositions with O:Li ratios of greater than 6:1 on annealing at above 150°C was attributed to the melting of the polymer crystalline phase and the retention of an amorphous polymer structure in the electrolyte on cooling down to the crystallisation temperature of the pure PEO phase.  相似文献   

9.
The full phase diagram of an isotactic polypropylene (i-PP)–dibutyl phthalate (DBP) mixture is for the first time constructed by an optical method and discussed within the concept of semicrystalline polymers as microheterogeneous liquids with a three-dimensional network structure. It is demonstrated that the liquidus in this and other polymer–solvent systems is not thermodynamically equivalent to the liquidus in low molecular weight (MW) mixtures. Qualitatively different thermal behavior of those two types of binary systems in the liquidus vicinity is corroborated by differential scanning calorimetry (DSC) experiments. In the former case, a liquid-solid transition resulting in the formation of polymer crystallites does not lead to separating the mixture into crystalline and amorphous phases. On cooling, the system remains macroscopically single phase until the low MW liquid can be fully dissolved in the amorphous regions of the polymer. The correct location of the corresponding borderline is crucially important for the microporous membrane formation via thermally induced phase separation (TIPS). It is also argued that the topology of a phase diagram polymer–low MW liquid does not depend on whether the polymer is amorphous or crystalline.  相似文献   

10.
We study the glass transition in confined polymer films and present the first experimental evidence indicating that two separate mechanisms can act simultaneously on the film to propagate enhanced mobility from the free surface into the material. Using transmission ellipsometry, we have measured the thermal expansion of ultrathin, high molecular-weight (MW), freestanding polystyrene films over an extended temperature range. For two different MWs, we observed two distinct reduced glass transition temperatures (T(g)'s), separated by up to 60 K, within single films with thicknesses h less than 70 nm. The lower transition follows the expected MW dependent, linear T(g)(h) behavior previously seen in high MW freestanding films. We also observe a much stronger upper transition with no MW dependence that exhibits the same T(g)(h) dependence as supported and low MW freestanding polymer films.  相似文献   

11.
The morphology of polyethylene single crystals prepared isothermally in solution was found to be independent of molecular weight. The enthalpy of fusion, lamellar fold period, and optical appearance were invariant for samples grown from fractions ranging from 20,000 to 2,000,000 in molecular weight. The mass fraction of lamellae which thicken during heating decreased linearly with increasing log molecular weight. The melting temperature of the crystals was also nearly independent of molecular weight.

The superheating of polyethylene crystals was observed to be a function of molecular weight and morphology. At a comparatively high molecular weight the heating rate of the calorimeter exceeded the crystal melting rate, which shifted the observed melting temperature to an anomalously high value. The incorporation of defects within the crystals by irradiation-induced cross-links or chain entanglements increased the melting rate of the high molecular weight samples and thereby minimized the effects of superheating.

The apparent heat of fusion of melt crystallized polyethylene decreased linearly with increasing log molecular weight. In contrast to this behavior the crystallinity of single crystals from dilute solution was independent of molecular weight.

In previous papers we have shown that reorganization of polymer single crystals is suppressed by cross-linking [1—3]. With the appropriate selection of heating rate and irradiation dose, the melting temperatures of solution grown crystals of various morphologies were determined in the absence of lamellar thickening. The observed melting temperatures of polyethylene single crystals with different X-ray fold periods were found to fit the following expression:

Tm = Tm0[1—2σe/Hf?] with an equilibrium melting temperature (Tm0) of 145.8 ± 1.0°C and a surface free energy (σe) of 89 ± 5 ergs cm?2 for a polyethylene crystal of infinite dimensions. In addition, at a constant heating rate it was observed that the fraction of crystals which thickened prior to melting decreased with increasing fold period.

Since cross-linking polyethylene increases the molecular weight of the material, it is instructive to investigate the reorganization characteristics of single crystals prepared from polyethylene fractions. Single crystals were prepared in xylene from molecular weight fractions of polyethylene and the effect of molecular weight upon the structure and thermal properties of the crystals was determined.  相似文献   

12.
The present work is an effort to study the effects of Li doping on the structural and transport properties of the solid polymer electrolyte, poly-ethelene oxide (PEO) (molecular weight, 200,000). Li-doped PEO was synthesized by treating PEO with n-Butyllithium in hexane for different doping concentrations. It is seen that the crystallinity of the doped PEO decreases on increasing the Li doping concentration and XRD and FTIR studies support this observation. FESEM images give better details of surface morphology of doped PEO samples. The TGA curves of PEO and Li-doped PEO samples reveal the weight loss region, and it is observed that the weight loss process of the solid polymer electrolyte is gradual rather than abrupt, contrary to the case of liquid electrolytes. The purity and the electrochemical stability of the samples were established by cyclic voltammetry studies. Impedance measurements were carried out to estimate the ionic conductivity of Li-doped PEO samples. The present value of ionic conductivity observed at room temperature in Li-doped PEO is about five orders higher than that of pure PEO and is quite close to that of liquid electrolytes. It is inferred that, ionic conductivity of the sample is increasing on increasing the Li doping concentration due to enhanced charge carrier density and flexibility of the doped sample structure. The ionic mobility and ionic transport are significantly improved by the less crystallinity and higher flexibility of the Li-doped PEO samples which in turn are responsible for the enhanced ionic conductivity observed.  相似文献   

13.
Pei-Yun Chen  Fuqian Yang 《哲学杂志》2015,95(31):3486-3496
Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.  相似文献   

14.
本文研究了分子量为6.0×103,1.2×104和2.0×104的PEO-NaSCN络合物的电学性能。分子量为6.0×103和2.0×104的样品,络合反应不完全,因而在第一次升温过程中,继续进行络合反应,导致电导率随温度变化的复杂行为。分子量为1.2×103的样品,络合反应相当充分,因而电学性能不受热历史的影响,过量的PEO对电导率的大小及其随温度的变化行为有显著影响。分子量为1.2×104的样品含有较多的过量的PEO,电导率最高,而且在PEO熔点附近,电导率突然增加。分子量为6.O×103的样品,含的过量PEO最少,电导率最低,而且随温度连续变化。 关键词:  相似文献   

15.
Abstract

Melting and crystallization behavior of poly(ethylene oxide) (PEO) with different molecular weight was investigated by modulated‐temperature differential scanning calorimetry (MT‐DSC)—step‐scan alternating DSC. It was found that by separating the reversing and nonreversing components of the (total) heat flow, PEO 10000, which exhibits the highest degree of crystallinity, shows the smallest nonreversing signal during crystallization. This effect can be attributed to the favorable structural features associated with spacial alignment. On the other hand, the crystallization process of PEO with molecular weight of 3400 is hindered by a relatively high content of end groups that may cause defects in the crystal lattice. For PEO 35000, low segmental mobility and chain entanglements lower the rate of crystallization. The area of the reversing component of PEO melting for different molecular weight fractions confirms that for PEO 10000, recrystallization is less intensive than for both the lower and higher molecular weight analogues.  相似文献   

16.
Considerations based on the Maron theory show that for solutions of an amorphous polymer in a solvent the values of A obtained from heats of solution, heats of dilution, osmotic pressure, and vapor pressure should all be identical. Here λ = (aWaT)2, where μ is the Maron theory interaction parameter, T the temperature, and v2 the volume fraction. On the other hand, for solutions of a crystalline polymer in a solvent the A's obtained from heats of solution should always differ from those given by the other measurements. The difference is due to the heat of fusion involved in melting the crystalline portion of the polymer. A method is presented by means of which this heat of fusion can be found from the observed heats of solution, and this heat of fusion can either be used as a relative measure of crystallinity, or it can be converted to percent crystallinity when the heat of fusion of the completely crystalline polymer is known. The method described is very precise, and highly sensitive to low degrees of order.  相似文献   

17.
A new ion conducting solid polymer electrolyte thin film based on Polyethylene oxide (PEO) with NaClO3 salt is prepared by solution-casting method. The solvation of salt with PEO has been confirmed by X-ray diffraction and IR spectral studies. Plasticizer effects were studied in PEO:NaClO3 system by using low molecular weight polyethylene glycol (PEG), dimethyl formamide (DMF) and propylene carbonate(PC). AC conductivity in the temperature range (308–378 K) was measured to evaluate the conductivity of the polymer electrolytes. From the conductivity data, it was found that the conductivity value of pure PEO increases 102–104 order of magnitude with the addition of salts as well as plasticizers. From the transference number experiments, it was confirmed that the charge transport in these electrolyte is mainly due to the ions (tion≈0.94). Finally, the conductivity value of all PEO: NaClO3 systems were compared.  相似文献   

18.
Effects of a low molecular weight physically adsorbed polyethylene oxide (PEO) and the range of the electrostatic repulsion on the rheological behavior of silica dispersions (as a model system) has been investigated. Particular attention is given to the evolution of the rheological behavior with increasing the polymer concentration in the system and also effectiveness of the polymer as a dispersant under extreme conditions (high ionic strength). Results indicate that at small separation distances and low polymer coverage, the polymer chains are long enough to adsorb on the surface of two particles simultaneously causing bridging flocculation in the system and hence increasing the viscosity and linear viscoelastic functions of the dispersion. A significant increase was observed in the viscosity of the dispersion at salt concentrations high enough to eliminate electrostatics between the particles. Under these conditions,the viscosity of the system increased significantly when PEO was added to the dispersion showing that at high electrolyte concentrations, a neutral polymer such as PEO is not able to stabilize the system.  相似文献   

19.
Surface-tethered assemblies of polymers with gradually varying molecular weight (MW) and/or grafting density are utilized to control the dispersion of nanosized particles. Using several case studies we show that these gradient polymer specimens represent ideal systems for combinatorial exploration of the parameters that control the distribution of the particles in surface-grafted layers. We demonstrate that the particle distribution is governed by the interplay between the particle size and the grafting density and molecular weight of the polymer brush.  相似文献   

20.
The effect of shearing on crystallization behavior of a crystalline/crystalline blend, polyoxymethylene [POM]/poly(ethylene oxide) [PEO], was investigated using polarized light microscopy connected with a CSS450 shearing hot-stage, scanning electron microscopy, differential scanning calorimetry [DSC], and x-ray diffraction [XRD]. The experimental results indicated that the shearing made POM and PEO disperse more evenly and increased the inclusion and entanglement effects between the molecular chains of POM and PEO and therefore enhanced the influence of PEO on the crystallization of POM. As a result, the blend sheared at a shear rate of 20 s?1 for 10 min at 160°C formed shish–kebab crystals and produced more interlamellar structures compared with the formation of perforated spherulites in the unsheared blend. Moreover, a more obvious shoulder melting peak of POM appeared in the DSC heating trace and a new diffraction peak occurred at 2θ = 31.7° in the XRD pattern for the sheared POM/PEO [50/50] blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号