首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present NMR measurements of the diffusion of hyperpolarized 3He in the human lung performed at fields much lower than those of conventional MRI scanners. The measurements were made on standing subjects using homebuilt apparatus operating at 3mT. O(2)-limited transverse relaxation (T(2) up to 15-35s) could be measured in vivo. Accurate global diffusion measurements have been performed in vivo and in a plastic bag; the average apparent diffusion coefficient (ADC) in vivo was 14.2+/-0.6mm(2)/s, whereas the diffusion coefficient in the bag (3He diluted in N(2)) was 79.5+/-1mm(2)/s. 1D ADC mapping with high SNR ( approximately 200-300) demonstrates the real possibility of performing quality lung imaging at extremely low fields.  相似文献   

2.
We report on the results of measurement of the coefficients of hydrogen diffusion through metal membranes in the course of their simultaneous hydrogen saturation and bombardment with electrons (energy 30 keV, current density from 3 to 30 µA/cm2) both in a broad and in a narrow beam. It is found that the time of hydrogen discharge from the membrane is determined by the parameters of the electron beam, its periodicity and duration, and also depends on the structure of the phase state of the metal membrane. It is shown that the diffusion coefficient increases when a narrow electron beam in the scanning regime is used. Analysis of the hydrogen yield as a function of time is carried out on a mass spectrometer connected to a vacuum chamber containing an electron gun, a beam sweep oscillator, and an electrolytic cell. The hydrogen diffusion coefficients under the action of a scanning electron beam are 15 times larger than under the same conditions without irradiation.  相似文献   

3.
Diffusion magnetic resonance imaging (MRI) was performed with a high-resolution segmented echo-planar imaging technique, which provided images with substantially less susceptibility artifacts than images obtained with single-shot echo-planar imaging (EPI). Diffusion imaging performed with any multishot pulse sequence is inherently sensitive to motion artifacts and in order to reduce motion artifacts, the presented method utilizes navigator echo phase corrections, performed after a one-dimensional Fourier transform along the frequency-encoding direction. Navigator echo phases were fitted to a straight line prior to phase correction to avoid errors from internal motion. In vivo imaging was performed using electro cardiographic (ECG) triggering. Apparent diffusion coefficient (ADC) maps were calculated on a pixel-by-pixel basis using up to seven diffusion sensitivities, ranging from b = 0 to 1129 x 10(6) s/m(2).  相似文献   

4.
Assessment of relaxation times, magnetization transfer rates, or apparent diffusion coefficients by volume selective (1)H MR spectroscopy requires data from several single spectra with variable sequence parameters. Unintentional movements during the examination lead to inaccuracies, especially if the spatial distribution of concentrations is inhomogeneous. Improved comparability of the single spectra in a series recorded in vivo were obtained using a modified spectroscopic technique with INTerleaved ACquisiTion of multiple SPECtra (INTACTSPEC). INTACTSPEC series of spectra from the tibialis anterior muscle (m. tib. ant.), soleus muscle (m. soleus), and tibial bone marrow of 20 healthy volunteers were analyzed. Transverse relaxation times T(2) of methylene signals in muscular lipid stores ranged from 77 ms (intramyocellular methylene component in m. tib. ant.) to 88 ms (intramyocellular methylene component in m. soleus) and were similar to those from yellow tibial bone marrow (T(2) = 84 ms). Echo time-dependent signal intensities of choline and creatine deviated markedly from a monoexponential behavior in m. tib. ant., but were nearly exponential in m. soleus. Results from water diffusion measurements parallel and perpendicular to the axis of the lower leg showed significant differences between m. tib. ant. and m. soleus, probably due to the spatial orientation of the muscle fibers. Apparent diffusion coefficients along the leg axis were found to be higher in m. tib. ant. (2.10 +/- 0.08 x 10(-3) mm(2)/s) compared to m. soleus (1.78 +/- 0.11 x 10(-3) mm(2)/s), but m. soleus showed less restricted diffusion in perpendicular orientation (1.59 +/- 0.19 x 10(-3) mm(2)/s versus 1.20 +/- 0.08 x 10(-3) mm(2)/s in m. tib. ant.). Magnetization transfer experiments with various RF preparation pulse amplitudes led to very similar results for m. tib. ant. and m. soleus.  相似文献   

5.
Molecular motion in the polar organic solvent nitrobenzene induced by an electric field is studied by magnetic resonance imaging. Rf pulse sequences that correlate images obtained at two different times under conditions of both continuous and pulsed electric fields are introduced. The resultant image correlation spectra indicate that the time scale of motion in a 9.6 kV/cm electric field is tens of milliseconds. Comparison of the results to an analytic solution for the Fokker-Planck probability function for one-dimensional bounded diffusion yields an electric field dependent effective diffusion coefficient for perdeuterated nitrobenzene of D = 1.08 x 10(-5) cm(2)/s + (3.33 x 10(-3) cm(4)/kV(2)s) E(2) at room temperature. Characteristics of this electroconvection and its consequences for combining multidimensional nuclear magnetic resonance with electrical orientation are also discussed.  相似文献   

6.
OBJECTIVE: To explore the diagnostic usefulness of high b-value diffusion magnetic resonance brain imaging ("q-space" imaging) in multiple sclerosis (MS). More specifically, we aimed at evaluating the ability of this methodology to identify tissue damage in the so-called normal-appearing white matter (NAWM). DESIGN: In this study we examined the correlation between q-space diffusion imaging and magnetic resonance spectroscopy (MRS)-based two-dimensional 1H chemical shift imaging. Eight MS patients with different degree of disease severity and seven healthy subjects were scanned in a 1.5-T magnetic resonance imaging (MRI) scanner. The MRI protocol included diffusion tensor imaging (DTI) (with bmax of 1000 s/mm2), high b-value diffusion-weighted imaging (with bmax of 14,000 s/mm2) and 2D chemical shift imaging. The high b-value data set was analyzed using the q-space methodology to produce apparent displacement and probability maps. RESULTS: We found that the q-space diffusion displacement and probability image intensities correlated well with N-acetylaspartate levels (r=.61 and .54, respectively). Furthermore, NAWM that was abnormal on MRS was also found to be abnormal using q-space diffusion imaging. In these areas, the q-space displacement values increased from 3.8+/-0.2 to 4.6+/-0.6 microm (P<.02), the q-space probability values decreased from 7.4+/-0.3 to 6.8+/-0.3 (P<.002), while DTI revealed only a small, but still significant, reduction in fractional anisotropy values from 0.40+/-0.02 to 0.37+/-0.02 (P<.05). CONCLUSION: High b-value diffusion imaging can detect tissue damage in the NAWM of MS patients. Despite the theoretical limitation of this method, in practice it provides additional information which is clinically relevant for detection of tissue damage not seen in conventional imaging techniques.  相似文献   

7.
Measurements on helium and argon gas flow through an array of parallel, linear channels of 12 nm diameter and 200 microm length in a single crystalline silicon membrane reveal a Knudsen diffusion type transport from 10(2) to 10(7) in Knudsen number Kn. The classic scaling prediction for the transport diffusion coefficient on temperature and mass of diffusing species, D(He) is proportional to square root T, is confirmed over a T range from 40 K to 300 K for He and for the ratio of D(He)/D(Ar) is proportional to square root (m(Ar)/m(He)). Deviations of the channels from a cylindrical form, resolved with electron microscopy down to subnanometer scales, quantitatively account for a reduced diffusivity as compared to Knudsen diffusion in ideal tubular channels. The membrane permeation experiments are described over 10 orders of magnitude in Kn, encompassing the transition flow regime, by the unified flow model of Beskok and Karniadakis.  相似文献   

8.
Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves.  相似文献   

9.
BACKGROUND AND PURPOSE: The stage at which normal appearing white matter (NAWM) abnormalities first appear in multiple sclerosis (MS) is not clear. The aim of our study was to monitor water diffusion changes over time in NAWM of patients with early MS.METHODS: Out of a consecutive series of patients enrolled in a MR study on clinically isolated syndrome (CIS), we selected 19 subjects who had completed a one year follow-up. The MR scans obtained at baseline and at 12 months were reviewed according to the new criteria on the diagnosis of MS. Lesion load on T2 and T1 weighted images and the trace of the apparent diffusion coefficient in NAWM were measured both at baseline and at 12 months in patients and in 12 healthy controls.RESULTS: In three patients the diagnosis of MS was done at baseline based on MR. Thirteen patients developed MS during the study and in three patients the diagnosis remained "possible MS." TADC in NAWM in patients was significantly higher than in controls at the 12 months' follow-up but not at baseline (controls mean tADC +/- sd = 0.745 +/- 0.02 mm(2)/sec x 10(-3); patients mean tADC(12) +/- sd = 0.767 +/- 0.02 mm(2)/sec x 10(-3); p < 0.02). TADC and T2 lesion load at 12 months were significantly correlated (p < 0.01). Patients exhibiting tADC(12) above a confidence interval had a significantly greater EDSS score at the same time period (EDSS(12) +/- sd = 1.9 +/- 0.5 and = 1.1 +/- 0.4 respectively; p < 0.01).CONCLUSIONS: This study suggests that diffusion MR cannot detect alterations in NAWM of patients with a CIS suggestive of MS. After one year, when most patients develop MS, diffusion MR abnormalities in NAWM become apparent. These abnormalities are correlated with T2 lesion load and may contribute to neurological impairment.  相似文献   

10.
Molecular dynamics (MD) simulations were performed to estimate the diffusion coefficients of O2 and H2O molecules in polyethylene terephthalate/aluminum/polyethylene interface at the temperature of 298 K. It came out that the diffusion coefficient of gasses in the interface is smaller than that of a single polymer, and the diffusion coefficients compare well with experimental data as well as previously published work. Furthermore, the diffusion coefficients of H2O molecules in the interface are preferable to that of O2 molecules. Interestingly, the largest diffusion coefficient was detected in the polyethylene terephthalate/aluminum(1 0 0)/polyethylene interface, while the smallest value of the diffusion coefficients was found in the polyethylene terephthalate/aluminum(1 1 1)/polyethylene interface. Calculation and analysis of the interaction between aluminum and polymers indicated that the interaction of polymer/aluminum(1 1 0) has the most interface strength, and crystal density of the metal surface has a definite effect on the planar interface energy. What’s more, the figure of gas molecule concentration is further resulted that the interface make contribution to adsorption of gas molecules. Moreover, the diffusion is belonging to the Einstein diffusion in the multilayer materials, and this work provides some key clues to improve the performance of polymer materials.  相似文献   

11.
A parametric method for spatially resolved measurements for velocity autocorrelation functions, R(u)(tau) = , expressed as a sum of exponentials, is presented. The method is applied to a granular flow system of 2-mm oil-filled spheres rotated in a half-filled horizontal cylinder, which is an Ornstein-Uhlenbeck process with velocity autocorrelation function R(u)(tau) = e(- ||tau ||/tau(c)), where tau(c) is the correlation time and D = tau(c) is the diffusion coefficient. The pulsed-field-gradient NMR method consists of applying three different gradient pulse sequences of varying motion sensitivity to distinguish the range of correlation times present for particle motion. Time-dependent apparent diffusion coefficients are measured for these three sequences and tau(c) and D are then calculated from the apparent diffusion coefficient images. For the cylinder rotation rate of 2.3 rad/s, the axial diffusion coefficient at the top center of the free surface was 5.5 x 10(-6) m(2)/s, the correlation time was 3 ms, and the velocity fluctuation or granular temperature was 1.8 x 10(-3) m(2)/s(2). This method is also applicable to study transport in systems involving turbulence and porous media flows.  相似文献   

12.
We used MRI of hyperpolarized3He to demonstrate some novel aspects of gas diffusion. Two different techniques were used. First, a slice was burned into a one-dimensional image by inverting the spins in the slice and diffusion was studied by measuring the magnetization as it filled the depleted slice. A diffusion coefficient was determined by the fit of these data. Second, one-dimensional diffusion images were made using a Stejskal–Tanner PGSE method. This was done with and without a temperature gradient present, showing that the effect of temperature can be dynamically monitored by such diffusion images.  相似文献   

13.
基于双液芯柱透镜的折射率空间分辨测量精度高的特点,本文采用两种方法在室温(25℃)下分别测量了不同浓度的蔗糖水溶液的液相扩散系数。方法一:等折射率薄层移动法,通过记录扩散过程中特定折射率薄层随时间的变化关系计算液相扩散系数。方法二:瞬态图像分析法,通过读取一幅瞬态扩散图像中图像宽度与扩散位置之间的关系确定液相扩散系数。双液芯柱透镜的前液芯作为扩散池和主要成像元件,后液芯作为消球差辅助系统。充分利用了双液芯柱透镜可以按需减小特定液体薄层处的球差以及能够在一定的折射率范围内同时减小球差,两种方法均具有测量精度高的特点。两种方法的测量结果与文献值的相对误差分别小于1.3%和3.9%,表明用双液芯柱透镜测量液相扩散系数时,测量系统稳定可靠,测量结果准确。  相似文献   

14.
激光全息干涉法测量二元气体扩散系数   总被引:2,自引:0,他引:2  
依据Mach-Zehnder干涉光路搭建了数字实时激光全息干涉实验台,设计加工了适用于测量二元气体扩散系数的扩散槽本体,详细介绍了根据物光相位的变化计算二元气体扩散系数的测量原理及图像处理方法。在此基础上测量了二元气体对H_2-Air、CH_4-Air和O_2-Air在273.15 K和0.1 MPa下的扩散系数,通过与文献值的比较验证了该实验方法的准确性,为后续二元气体扩散系数测量工作奠定了坚实的基础。  相似文献   

15.
This paper describes the behaviour of impurity transport in HL-2A ohmic discharges. In 2005, small quantities of metallic impurities (A1, Ni and Ti) were successfully injected into HL-2A plasmas by laser blow-off technique, and their progression was followed by the soft x-ray cameras with good spatial and temporal resolutions. The impurity confinement time is estimated from the characteristic decay time of the soft x-ray signal of the injected impurities, and it is about 30-60 ms. The transport coefficients of impurities (including diffusion coefficient and convection velocity) in radial different region have been derived by using a one-dimenslonal impurity transport code, the results present that diffusion coefficient is much smaller in the central region of plasmas than the outside of it, and it is much larger than that of neoclassical theory predictions; namely, it is anomalous.[第一段]  相似文献   

16.
The anisotropy, D(parallel)/D( perpendicular ), of water diffusion in fully hydrated bilayers of dimyristoylphosphatidylcholine at 29 degrees C has been measured by pulsed magnetic field gradient (pfg) NMR. By using NMR imaging hardware to produce magnetic field gradients in an arbitrary direction with respect to a stack of macroscopically aligned lipid bilayers, translational diffusion of water was measured as a function of the angle between the direction of the magnetic field gradient and the normal of the lipid membrane. The observed diffusion coefficient is found to depend strongly on this angle. The anisotropy cannot be accurately determined due to the very small value of D( perpendicular ), but a lower limit of about 70 can be estimated from the observed diffusion coefficients. The results are discussed in terms of the relatively low permeability of water across the lipid bilayer, instrumental limitations, and/or possible defects in the lamellae.  相似文献   

17.
Yu.A. Kashlev 《Physica A》1984,129(1):184-200
Hydrogen migration in a one-dimensional model of the bcc lattice is examined using the double-time Green functions, for temperatures at which the migration mechanism is mainly due to the thermally activated tunnelling of a proton. In deriving the coefficient of incoherent hydrogen diffusion, allowance is made for the lattice distortion around the hydrogen and for the two-phonon scattering processes. It is shown that the observed temperature break in the activation energy of incoherent hydrogen diffusion in bcc metals is the result of the change in the mechanism responsible for an elementary diffusion process near the Debye temperature, anmely, it is the result of the transition from “passive” to “active” transport.  相似文献   

18.
应用核磁共振成像(MRI)技术可视化研究CO2在癸烷中的扩散,在MRI系统采集图像的同时,应用双室压力衰减法(PVT法)监测压力,通过对MRI图像进行信号强度分析,可得到CO2的无量纲浓度分布,然后基于菲克定律应用有限体积法可计算得出与扩散距离和扩散时间有关的扩散系数,并可得到任意扩散时间范围内的整体平均扩散系数,MRI方法得出的扩散平衡时间范围内的整体平均扩散系数与PVT法相比较误差为2.7%,并且与相似条件下的前人实验结论具有相同的数量级(10–9).根据实验结果得出,扩散系数沿扩散方向下降且随时间以指数形式降低,整体平均扩散系数随扩散时间的增加而减小.  相似文献   

19.
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号