共查询到19条相似文献,搜索用时 163 毫秒
1.
为揭示在水流条件下四尾栅藻与微囊藻竞争时对微囊藻生长的影响。在室内无菌条件下,通过有机玻璃环形槽模拟不同水体流速下四尾栅藻对铜绿微囊藻生长的影响。通过竞争抑制参数对相互间的竞争关系、微囊藻生物量和最大比增长速率进行了分析。结果表明,在流动水体中四尾栅与微囊藻之间的相互竞争表明,微囊藻对水流的适应性降低,在单独培养条件下最适宜的流速为35cm/s,混合培养条件下则为5cm/s,而对四尾栅藻的影响较小;混合培养下微囊藻的对数生长时间较单独培养下延长;在流速为0~25cm/s时四尾栅藻促进微囊藻的生长、比增长速率增加,当流速为35cm/s时则表现为抑制作用、比增长速率降低;对照组和实验组中微囊藻对四尾栅藻生长产生弱的抑制作用。 相似文献
2.
亚硝酸盐浓度的升高不但会影响藻类的种群密度,而且会影响藻类的群落结构。为了探讨亚硝酸盐对湖泊藻类种群竞争的影响,采用批量培养的方法,研究了不同亚硝酸盐浓度下,铜绿微囊藻和四尾栅藻的生长和竞争,并通过竞争抑制参数对相互的竞争关系进行了分析。结果表明,在实验条件下,两种藻之间存在着竞争抑制作用,四尾栅藻在竞争中占据一定的优势,亚硝酸盐浓度的升高使得四尾栅藻的竞争优势更为明显,加快了铜绿微囊藻的衰退。分析原因,是在高浓度亚硝酸盐(20mg/L、30mg/L)条件下,铜绿微囊藻受到的伤害更大和铜绿微囊藻与四尾栅藻的相互化感作用增强这两方面协同作用造成的。 相似文献
3.
在不同氮(N)、磷(P)初始浓度的培养液中对铜绿微囊藻(Microcystis aeruginosa)进行培养.利用Monod方程分别计算铜绿微囊藻对氮、磷的半饱和常数(Ks).结果表明:以单一元素为限制底物时,满足铜绿微囊藻正常生长的氮浓度大于4.0 mg·L-1,磷浓度大于0.50 mg·L-1;铜绿微囊藻最适生长的氮浓度范围为32.0~64.0 mg·L-1,磷浓度范围为1.0~1.50 mg·L-1;以磷为限制底物时的半饱和常数Ksp远远小于以氮为限制底物时的半饱和常数KsN(KsN>Ksp),说明铜绿微囊藻对磷的亲和性高于氮.与铜绿微囊藻最大现存量(X)呈高度线性相关时的氮浓度范围为0.20~64.0 mg·L-1,磷浓度范围为0.02~1.50 mg·L-1.铜绿微囊藻比增长速率(μ)连续增加的氮浓度范围为0.20~1.60 mg·L-1,磷浓度范围为0.02~0.50 mg·L-1. 相似文献
4.
不同氮磷浓度对米氏凯伦藻生长的影响 总被引:3,自引:0,他引:3
采用f/2培养基,NaNO3和NaH2PO4分别为氮源和磷源,分别研究了不同浓度的氮磷源(NaNO3:30、60、150、750、1 275、3 000 mg/L,NaH2PO4:4.4、8.8、22、44、88、176 mg/L)对米氏凯伦藻(Karenia mikimotoi MACC/,D23)生长的影响.单因子方差分析结果表明,不同的氮、磷浓度对其相对生长率的影响均有显著性差异(P0.05).多重比较结果表明:750 mg/L NaNO3浓度组的相对生长率显著高于其他浓度组,22,mg/L NaH2PO4浓度组的相对生长率显著高于其他浓度组,88,mg/L和176 mg/L NaH2PO4浓度组之间没有显著性差异.其最高细胞密度和相对生长率在NaNO3质量浓度为30~750,mg/L时,随氮浓度的升高而升高,均在NaNO3质量浓度为750,mg/L时达到最大值,分别为4.60×106,mL–1和0.608,d–1,而当NaNO3质量浓度大于750,mg/L时,最高细胞密度和相对生长率随氮浓度的进一步升高而降低.当NaH2PO4质量浓度在4.4~8.8,mg/L之间,最高细胞密度随磷浓度升高而升高,在8.8,mg/L时达到最大值,为2.69×106,mL–1;当NaH2PO4质量浓度在4.4~22,mg/L之间,相对生长率随磷浓度的升高而升高,在22,mg/L时达到最大值,为0.568,d,–1,之后随磷浓度的进一步升高而降低. 相似文献
5.
三种高等水生植物对铜绿微囊藻生长的影响 总被引:10,自引:0,他引:10
蓝藻水华是一个重要的湖泊环境问题,尤其是微囊藻(Microcystis)水华最为严重,被称为湖泊癌症。因此,如何控制微囊藻的生长一直是湖泊富营养化研究中的重要课题。近年来,利用水生植物控制水体富营养化已受到国内外的广泛重视,有关高等水生植物对藻类的相生相克作用研究也有一些报 相似文献
6.
鞣花酸对铜绿微囊藻和斜生栅藻的生长抑制作用 总被引:1,自引:0,他引:1
采用三种不同浓度的鞣花酸作用于斜生栅藻和铜绿微囊藻,探索了鞣花酸对这两种藻的生长抑制作用.通过同期生长的处理组与对照组的藻细胞数和OD值比较以及抑制率计算t、检验等对实验结果进行分析表明:鞣花酸对铜绿微囊藻和斜生栅藻的最大抑制率都在85%以上,但对铜绿微囊藻抑藻效果更显著.鞣花酸浓度为0.9 mmol/L时,对斜生栅藻的生长有明显的抑制作用;而在0.6mmol/L时就对铜绿微囊藻表现出明显的抑制效应,这些结果可为水华的治理提供理论参考. 相似文献
7.
研究了不同浓度铁离子对栅藻生长和藻细胞抗氧化系统的影响.分析测定了培养基初始Fe3+分别为0,1.2×10-3,1.2×10-4,1.2 ×10-5,1.2×10-6,1.2×10-7 mol·L-1时栅藻的细胞密度、生物量、蛋白质含量、总脂产量及脂肪酸组成,并研究了不同浓度铁离子对栅藻细胞的抗氧化系统的影响.实验结果表明,当培养基中初始铁离子浓度为1.2×10-4 mol·L-1时最适合栅藻生长和蛋白质合成,蛋白质含量达到最大为97.33 μg·mL-1;当初始Fe3+浓度为1.2 ×10-5 mol·L-1时,栅藻细胞总脂占干质量最高达38.60%;C18∶ 2和C18∶3占总脂肪酸的比例随Fe3+浓度增加而降低.当Fe3+浓度达到1.2×10-3 mol·L-1时,栅藻的生长受到抑制.与对照组(培养基不添加铁离子)相比,不同浓度铁离子使栅藻总抗氧化能力增加,超氧化物歧化酶(SOD)活性和谷胱甘肽过氧化物酶(GSH-Px)活性有不同程度的提高,羟自由基能力受到不同程度的抑制. 相似文献
8.
利用生命表实验,研究了不同斜生栅藻浓度下,铜绿微囊藻对萼花臂尾轮虫和红臂尾轮虫生活史的影响.结果表明:当斜生栅藻浓度较高(105,106cells/m L)时,铜绿微囊藻对萼花臂尾轮虫的存活和繁殖有抑制作用,对照组轮虫的rm、R0均显著高于铜绿微囊藻组中的值(p0.01);当斜生栅藻浓度较低(104cells/m L)时,铜绿微囊藻对萼花臂尾轮虫种群则有一定的促进作用.任一斜生栅藻浓度下,铜绿微囊藻对红臂尾轮虫种群存活和繁殖及生活史特征参数均有抑制作用,且这种抑制作用随斜生栅藻浓度的升高而减弱.说明铜绿微囊藻对轮虫的作用受其他可食性绿藻食物浓度的影响,且这种影响随轮虫种类的不同而有差异. 相似文献
9.
穗花狐尾藻对淡水水华藻类的化感效应(英文) 总被引:2,自引:0,他引:2
为了寻找到一条有效治理淡水水华的途径,研究了大型沉水植物穗花狐尾藻的培养液对铜绿微囊藻和斜生栅藻的单独培养及混合培养的化感抑制效应,同时研究了穗花狐尾藻培养液对池塘混合藻类的化感抑制效应.结果表明:穗花狐尾藻培养液可抑制铜绿微囊藻和斜生栅藻的生长,对铜绿微囊藻抑制效应尤为明显;穗花狐尾藻培养液还可导致池塘混合藻叶绿素a含量下降,藻细胞还原能力降低.总之,该研究提示利用穗花狐尾藻的化感作用可能是一种控制水华藻类的有效方法. 相似文献
10.
文章研究单细胞的产毒铜绿微囊藻和斜生栅藻的组合对拟同形溞生长生殖的影响.结果表明:拟同形溞不能在纯铜绿微囊藻下生长生殖.随着斜生栅藻浓度的升高,拟同形溞的首次怀卵时间逐渐减少,而成熟体长逐渐增大.拟同形溞的首次产幼溞数、最大种群密度及最大种群增长率随着斜生栅藻浓度的增大而增大.最大种群密度和最大种群增长率均出现在2×106cells/mL的斜生栅藻浓度组,分别为302.7 ind.(200 mL)-1和0.213 d-1.在低的斜生栅藻浓度(1×105cells/mL)下,拟同形溞不产生卵鞍.在2×105~2×106cells/mL的斜生栅藻浓度下,拟同形溞产出较多的卵鞍,最大值(77.3 ind.)出现在1×106cells/mL的斜生栅藻浓度组.在较高的斜生栅藻浓度(1×106cells/mL和2×106cells/mL)下,含休眠卵的卵鞍数占总休眠卵数的比例明显高于较低的斜生栅藻浓度组(2×105cells/mL和4×105cells/mL).研究暗示,斜生栅藻浓度的增大可以减缓产毒单细胞铜绿微囊藻对拟同形溞的生长生殖的抑制作用,而卵鞍的产生和休眠卵的形成受其种群密度和铜绿微囊藻的共同影响. 相似文献
11.
以小球藻和水华微囊藻细胞的生长状况、光合作用参数、叶绿素a质量浓度的变化作为指标,研究不同体积分数的丙酮对2种藻类的毒性效应.结果表明:体积分数为0.000 5%~0.500 0%的丙酮对小球藻和体积分数为0.000 5%~0.050 0%的丙酮对水华微囊藻均不同程度地促进藻细胞生长,对藻类的叶绿素a无影响,明显提高了藻类的最大光合速率(rETRmax)、光能利用率(α)和光适应能力(Ik),同时提高了光系统Ⅱ的最大光化学效率(Fv/Fm);丙酮体积分数为5.000 0%的小球藻和丙酮体积分数为0.500 0%~5.000 0%的水华微囊藻,其藻类光合作用、叶绿素a显著降低,导致藻类生长严重抑制甚至死亡;丙酮对小球藻和水华微囊藻的最大无影响体积分数(NOEC)分别为0.500 0%,0.050 0%,说明水华微囊藻对丙酮更为敏感. 相似文献
12.
在实验室条件下,研究了不同氮(0、0.1、0.4、0.8、1.0、1.2 g/L)、磷(0、0.015、0.025、0.030、0.045、0.060 g/L)浓度下杜氏盐藻生长增殖的关系和特征,以及氮磷比(c(N)/c(P))变化等对该藻生长的影响。实验结果表明:杜氏盐藻对氮、磷有着较强的适应能力,浓度增大藻增长率增大,浓度继续增大反而抑制藻的增长,属于营养依赖型藻类。不同氮质量浓度梯度对杜氏盐藻生长具有显著性影响(P<0.05),但对杜氏盐藻生长率K的影响不显著(P>0.05),最适宜的氮浓度为1.0 g/L;不同磷质量浓度梯度对杜氏盐藻的生长和生长率K具有显著性的影响(P<0.05),最适宜的磷浓度为0.025 g/L。当c(N)/c(P)为40时,最适合杜氏盐藻的生长。 相似文献
13.
为了解水体营养物质低限浓度对浮游植物生长的影响,于2006年4月研究了浮游植物在自来水及添加不同浓度氮和磷后的自来水中生长情况.结果表明,在自来水中,浮游藻类仍然能够大量生长繁殖,培养28 d后个体密度可达8.00×104 inds·L-1.在添加总氮(TN)浓度分别为0.8,0.4,0.2,0.1,0.05和0.025 mg·L-1的自来水样中,浮游藻类浮游藻类密度分别达到1.69×105,2.81×105,1.19×105,1.03×105,5.88×104和8.12×104 inds·L-1.在添加总磷(TP)浓度分别为0.16,0.08,0.04,0.02,0.01和0.005 mg·L-1 的自来水样中,密度分别达到1.71×106,7.23×105,5.13×105,5.00×105,3.85×105和3.75×105 inds·L-1.藻类密度与添加的TN浓度之间关系为y=-88 650x2 895 456x 26 326,与TP浓度之间关系为y=8×106x 262 582.添加P对藻类生长的影响比N更为显著.控制水体氮磷浓度难以达到控制浮游植物大量繁殖的目的. 相似文献
14.
传统生物脱氮除磷与反硝化除磷脱氮工艺的比较 总被引:1,自引:0,他引:1
刘晓琎 《科技情报开发与经济》2010,20(25):130-132
在介绍传统脱氮除磷工艺和反硝化除磷脱氮工艺过程的基础上,对两者的反应机理及脱氮除磷效果进行了比较和分析。 相似文献
15.
基质对人工湿地脱氮除磷效果影响研究 总被引:1,自引:0,他引:1
构建了粉煤灰+石灰石混合基质床人工湿地处理养殖废水,并与石灰石单一基质床相比较,结果表明,粉煤灰是一种磷吸附能力很强的基质,在人工湿地中填充粉煤灰和石灰石组成的混合基质可以明显提高磷去除效率,而且粉煤灰还可以作为碱源供应碱而有利于氮的去除;磷素在人工湿地中的主要去除机理是基质吸附,因此加大基质填充深度增加基质填充量可以明显提高磷的去除;而氨氮的主要去除机理为硝化/反硝化反应,湿地内部溶解氧是限制其去除的关键因素,因此增加基质填充高度虽然能增强反硝化作用,但不能增加复氧而强化硝化作用,故对氨氮的去除影响很小。 相似文献
16.
17.
人工湿地不同的水流方式和基质对氮和磷的净化的比较 总被引:5,自引:0,他引:5
比较了在两种污水浓度下,人工湿地选用不同基质和水流方式时的处理效果,旨在通过试验,找到处理污水的最佳基质和水流方式.结果表明,对于高浓度污水,将陶粒和蛭石结合作为人工湿地基质,对总氮和COD的处理效果较好;水流方式采用表面流和垂直流串联搭配时,污水处理负荷较大,出水水质高.对于低浓度污水,选用陶粒和腐殖质作为基质,出水水质较好.人工湿地基质是影响磷的处理效果的主要因素,选用富含氧化铁的炉渣作为基质时处理效果最好,通过合理的操作方式可以最终从污水中除磷. 相似文献
18.
不同碳氮源对尖顶羊肚菌(Morchella conica)生长的影响 总被引:1,自引:0,他引:1
对尖顶羊肚菌(M.conica)液体培养中不同的碳氮源以及合适的碳氮比进行研究.结果表明,合适的碳源是蔗糖、淀粉、麦芽糖和葡萄糖;合适的氮源是天冬氨酸、半光氨酸和亚硝酸钠;合适的碳氮比是35∶1.液体培养生长曲线测定表明,12d时生物量达到高峰. 相似文献
19.
为探索富营养化水体中蓝藻水华的形成机理,研究不同光照条件下水流对铜绿微囊藻生长的影响.采用小型有机玻璃环形槽模拟不同水流,在恒温、无菌条件下进行,对比研究了两种光照强度(2 500lx和3 500lx)下的差异.结果表明:在不同光照条件下,水流改变了微囊藻的各个生长阶段,使微囊藻适应时间增加,对数生长时间延长,水流提高微囊藻的比增长速率,直接影响微囊的生物量;水流对微囊藻的影响与光照强度有关,在光照强度为2 500lx时较光强为3 500lx时更利于微囊藻的生长,且均在35cm/s时最利于微囊藻的生长;微囊藻在2 500lx时各流速下微囊藻生长差异较大,而光照为3 500lx时微囊藻的生长在各流速下的差异较小;水流降低了微囊藻对光照强度的需求并提高了对光的利用。 相似文献