首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
An on-line method, based on coupling dynamic ultrasonic extraction (DUE), continuously sampling the suspension of sample and solvent, high performance liquid chromatographic separation with diode array detection, has been developed for the determination of the flavonoids, including baicalin, baicalein and wogonin, from the root of Scutellaria baicalensis Georgi. Variables influencing the DUE were evaluated by orthogonal test. The extraction yields of baicalin, baicalein and wogonin in the roots of S. baicalensis Georgi obtained from five different cultivated areas are 73.8–131.5 μg mg−1 (RSD ≤ 6.24%), 6.8–15.9 μg mg−1 (RSD ≤ 5.36%) and 4.4–14.3 μg mg−1 (RSD ≤ 5.30%), respectively. The limits of detection for baicalin, baicalein and wogonin are 0.30, 0.37 and 0.41 μg mL−1, respectively. Linearity is from 0.55 to 109 μg mL−1 for baicalin, from 0.51 to 105 μg mL−1 for baicalein and from 0.53 to 102 μg mL−1 for wogonin. Compared with off-line continuous flow-DUE, the proposed method would be more convenient for the determination of the analytes and the rapid optimization of the extraction process. The extraction yields of flavonoids obtained by the proposed method are comparable with those obtained by dynamic microwave assisted extraction, static ultrasonic extraction and reflux extraction. The result indicated that the proposed method is suitable to determine the active components in Chinese herbal medicine.  相似文献   

2.
Four simple, rapid, accurate, precise, reliable and economical spectrophotometric methods have been proposed for simultaneous determination of salbutamol sulphate (SS), bromhexine hydrochloride (BH) and etofylline (ET) in pure and commercial formulations without any prior separation or purification. They were first derivative zero crossing spectrophotometry (method 1), simultaneous equation method (method 2), derivative ratio spectra zero crossing method (method 3) and double divisor ratio spectra derivative method (method 4). The ranges for SS, BH and ET were found to be 1-35 μg mL−1, 4-40 μg mL−1 and 5-80 μg mL−1. For methods 1 and 2, the values of limit of detection (LOD) were 0.2314 μg mL−1, 0.4865 μg mL−1 and 0.2766 μg mL−1 and the values of limit of quantitation (LOQ) were 0.7712 μg mL−1, 1.6217 μg mL−1 and 0.9221 μg mL−1 for SS, BH and ET, respectively. For method 3, LOD values were 0.3297 μg mL−1, 0.2784 μg mL−1 and 0.7906 μg mL−1 and LOQ values were 0.9325 μg mL−1, 0.9282 μg mL−1 and 2.6352 μg mL−1 for SS, BH and ET, respectively. For method 4, LOD values were 0.3161 μg mL−1, 0.2495 μg mL−1 and 0.2064 μg mL−1 and LOQ values were 0.9869 μg mL−1, 0.8317 μg mL−1 and 0.6879 μg mL−1 for SS, BH and ET. The precision values were less then 2% R.S.D. for all four methods. The common excipients and additives did not interfere in their determinations. The results obtained by the proposed methods have been statistically compared by means of Student t-test and by the variance ratio F-test.  相似文献   

3.
A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm × 4.6 mm; 4 μm) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min−1. Column temperature was 30 °C. The RRS signal was detected at λex = λem = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 μg mL−1 was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 μg mL−1 for oxytetracycline (OTC), 12.11-605.5 μg mL−1 for tetracycline (TC), 11.79-589.5 μg mL−1 for chlortetracycline (CTC) and 10.32-516.0 μg mL−1 for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability.  相似文献   

4.
K. Isaac-Olive  A. Chatt 《Talanta》2008,77(2):827-832
Iodine is an essential trace element for human beings. The main source of iodine is generally food items such as fish and milk. Either the lack or the excess of iodine can cause health problems. There exists an increasing interest in the determination of total iodine as well as various species of iodine in milk. We have developed an epithermal neutron activation analysis method with a Compton suppression (ENAA-CS) counting system for the determination of ng mL−1 levels of iodine. We have also employed chemical separation methods prior to ENAA-CS to measure the fraction-specific concentrations of iodine in bovine milk. We have measured the following iodine concentrations in homogenized milk (3.25%milk fat): 0.48 ± 0.02 μg mL−1 of total iodine, 0.020 ± 0.003 μg mL−1 of lipid-bound iodine, 0.039 ± 0.002, 0.019 ± 0.002 and 0.021 ± 0.004 μg mL−1 of protein-bound iodine depending on the protein separation method and 0.45 ± 0.02 μg mL−1 of inorganic species.  相似文献   

5.
Liu W  Zhang Z  Liu Z 《Analytica chimica acta》2007,592(2):187-192
In this paper, a chemiluminescence (CL) micro-flow system combined with on-line solid phase extraction (SPE) is presented for determination of β-lactam antibiotics (penicillin, cefradine, cefadroxil, cefalexin) in milk. It is based on the enhancement effect of β-lactam antibiotics on the luminol-K3Fe(CN)6 CL system. The micro-flow system was fabricated from two polymethyl methacrylate (PMMA) plates (50 mm × 40 mm × 5 mm) with the microchannels of 200 μm wide and 150 μm deep. C18-modified silica gel was packed into the microchannel (length: 10 mm; width: 1 mm; depth: 500 μm) to serve as SPE device. Extraction and preconcentration of the analytes were carried out using on-line SPE micro-flow system and the selectivity of CL detection was improved. The detection limits were 0.5 μg mL−1 of penicillin, 0.04 μg mL−1 of cefradine, 0.08 μg mL−1 of cefadroxil and 0.1 μg mL−1 of cefalexin. The proposed method was also applied to analyze the β-lactam antibiotics in milk. Experimental results were in good agreement with those obtained by high performance liquid chromatography (HPLC) method with UV detection.  相似文献   

6.
In this study we propose a chromogenic platform for rapid analysis of organophosphate (OP) and carbamate (CM) insecticide residues, based on recombinant Drosophila melanogaster acetylcholinesterase (R-DmAChE) as enzyme and indoxyl acetate as substrate. The visible chromogenic strip had the advantages identical to those of commonly used lateral flow assays (LFAs) with utmost simplicity in sample loading and result observation. After optimization, depending on the color intensity (CI) values, the well-established assay has the capabilities of both qualitative measurement via naked eyes and quantitative analysis by colorimetric reader with the desirable IC50 values against the tested six insecticides (0.06 μg mL−1 of carbofuran, 0.28 μg mL−1 of methomyl, 0.03 μg mL−1 of dichlorvos, 31.6 μg mL−1 of methamidophos, 2.0 μg mL−1 of monocrotophos, 6.3 μg mL−1 of omethoate). Acceptable matrix effects and satisfactory detection performance were confirmed by in-parallel LC–MS/MS analysis in different vegetable varieties at various spiked levels of 10−3 to 101 μg g−1. Overall, the testified suitability and applicability of this novel platform meet the requirements for practical use in food safety management and environmental monitoring, especially in the developing world.  相似文献   

7.
Zhao J  Chen Z  Li X  Pan J 《Talanta》2011,85(5):2614-2619
A microfluidic chip manufactured from glass substrate and indium tin oxide (ITO) coated glass use for contactless conductivity detection was developed. The detecting electrodes were fabricated by screen-printing and chemical etching methods using an ITO-coated glass wafer. Then, the glass substrate containing separation channels was bonded with the bare side of the processed ITO-coated glass, thus producing an electrophoresis chip integrated with contactless conductivity detector. The prepared microchip displayed considerable stability and reproducibility. Sensitive response was obtained at optimal conditions (including the gap between electrodes, excitation frequency, and excitation voltage). The feasibility of this microfluidic device was examined by detection of inorganic ions, and further demonstrated by the quantification of aminopyrine and caffeine in a compound pharmaceutical. The two ingredients can be completely separated within 1 min. The detection limits were 8 μg mL−1 and 3 μg mL−1, respectively; with the correlation coefficient of 0.996-0.998 in the linear range from 10 μg mL−1 to 800 μg mL−1. The results have showed that the present method is sensitive, reliable and fast.  相似文献   

8.
A quantitative method of capillary electrophoresis with sample stacking induced by moving reaction boundary (MRB) was developed for sensitive determination of oxymatrine (OMT) and matrine (MT) in rat plasma. The experimental conditions were optimized firstly. Below are the optimized experimental conditions: 20 mM sodium formate solution (HCOONa, adjusted to pH 10.70 by ammonia) as sample solution, 3 min 14 mbar sample injection, 40 mM formic buffer (HCOOH-HCOONa, pH 2.60) as stacking buffer, 7 min 14 mbar injection of stacking buffer, 100 mM HCOOH-HCOONa (pH 4.80) as separation buffer, 73 cm capillary (effective length 64 cm), 21 kV voltage, 210 nm wavelength. Under the optimized conditions, higher than 60-fold sensitivity improvement of the stacking was simply achieved as compared with capillary zone electrophoresis, and the detectable limits obtained for OMT and MT were 0.26 and 0.19 μg mL−1, respectively. Then, numerous demonstrations were carefully performed for the methodological validations of OMT and MT in rate plasma, including high specificity of method, good linearity (r = 0.9993 for OMT, r = 0.9991 for MT), fair wide linear concentration range (1.30-65.00 μg mL−1 for OMT, 0.84-42.00 μg mL−1 for MT), low limit of detection (1.03 μg mL−1 for OMT, 0.38 μg mL−1 for MT), less than 5% intra- and inter-day variance value, and higher than 96% recovery of OMT and MT in plasma. The developed method could be used for the trace analyses of OMT and MT in plasma and was finally used for the investigation on pharmacokinetic study of OMT in rat plasma.  相似文献   

9.
A simple, precise, accurate and validated, acetonitrile-free, reverse phase high performance liquid chromatography (HPLC) method is developed for the determination of melamine in dry and liquid infant formula. The separation is performed on a Kromasil C18 column (150 mm × 3.2 mm I.D., 5 μm particle size) at room temperature. The mobile phase (0.1% TFA/methanol 90:10) is pumped at a flow rate of 0.3 mL min−1 with detection at 240 nm. Melamine elutes at 3.7 min. A linear response (r > 0.999) is observed for samples ranging from 1.0 to 80 μg mL−1. The method provides recoveries of 97.2-101.2% in the concentration range of 5-40 μg mL−1, intra- and inter-day variation in <1.0% R.S.D. The limit of detection (LOD) and limit of quantification (LOQ) values are 0.1 μg mL−1 and 0.2 μg mL−1, respectively.  相似文献   

10.
A simple sample preparation method was developed by using a centrifugal ultrafiltration (CF-UF) device with hollow fiber (HF) for the determination of cefaclor in plasma by HPLC. Samples were placed into a homemade device, which was consisted of a glass tube and a U-shaped hollow fiber. The filtrate was withdrawn from the hollow fiber into a syringe after centrifugation and 20 μL was directly injected into the HPLC for analysis. The HPLC method had a linear calibration curve in the concentration range of 6.00 × 10−2–30.7 μg mL−1(r = 0.9996). The limit of detection (LOD) and limit of quantitation (LOQ) were 0.02 and 0.06 μg mL−1, respectively. The intra and inter-day precisions (RSD) were 1.7%, 1.2%, 1.0% and 3.6%, 2.5%, 1.9%, respectively, for three concentrations. Assay accuracy was higher than 99.2% and the absolute recovery was 86.8–92.5%. It is feasible to use this novel and low cost device for sample pretreatment for the analysis of cefaclor in plasma.  相似文献   

11.
Melamine is a chemical product that was sporadically mixed into animal feeds to boost protein content. Excessive melamine in animal feed can induce renal failure and even death in animals. The residue of melamine in edible animal products also threatens human health. Currently, there is no real-time and high throughput method to detect residual melamine in animal tissues. Successful development of such methods is very important for fast and on-site screening of melamine residue in animal tissues to eliminate the potential threat to human health. Here we demonstrate the detection of residual melamine from swine and chicken tissues and body fluids using indirect competitive enzyme-linked immunosorbent assay (ELISA) method. A detection sensitivity of 0.5 μg mL−1 and a limit of detection of 0.05 μg mL−1 were achieved with this method. A gas chromatography-mass spectrometry (GC-MS) method was also developed to act as a confirmatory and quantitative procedure for the ELISA results. The limits of quantitation (LOQ) of were 0.01 μg g−1 and 0.005 μg mL−1 for tissues and body fluids, respectively. The two methods showed good agreement (r2 > 0.992). The method developed was performed on samples of tissues from chickens fed with melamine-spiked feed.  相似文献   

12.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   

13.
Since its extensive development in the early 1980s, SFE has attracted considerable attention as a sample-preparation procedure. However, other different sample preparation procedures, including precipitation, liquid- and/or solid-phase extraction in biological fluids, also remain in use. In this investigation, SFE was introduced to isolate and identify orbifloxacin from plasma and milk. Four parameters, including the temperature and the pressure of supercritical fluid, modifier ratios, and dynamic extraction time, were evaluated and optimized to obtain the best yield of the analyte from the biological fluids. Determinations of the orbifloxacin (OBFX) in the extracts were carried out using HPLC-FLD. The optimum conditions of the extraction process that yielded the maximum analyte extraction efficiencies were 150 °C vs. 60 °C, 250 kg cm−2, 30% vs. 35% methanol, and 40 min vs. 20 min, for plasma and milk, respectively. The linearity of the calibration curves as well as the instrument LODs/LOQs were evaluated. Good linearity (at least r2 ≥ 0.999) of the calibration curves was obtained over the range from 0.2 to 0.01 μg mL−1. The method showed a good recovery rate (74.2-127.73%) and precision (RSDs: 1.64-20%). The instrumental LOD and LOQ values were 0.004 μg mL−1 vs. 0.01 μg mL−1 or 0.006 μg mL−1 vs. 0.02 μg mL−1, for plasma and milk, respectively. The method was successfully applied to estimate the pharmacokinetic variables of orbifloxacin in lactating does. To the best of our knowledge, this is the first time that SFE has been applied to isolate an antimicrobial agent from biological fluids. This method is promising for clinical applications and for pharmacokinetic studies of various pharmaceuticals in biological fluids.  相似文献   

14.
A simple and rapid reversed-phase HPLC-UV method was developed for the determination of triterpenic acids in the crude extract of Prunellae Spica. Five triterpenic acids were extracted and isolated from P. Spica as marker compounds for use in the quality control of herbal medicines. Various solvent extraction techniques were evaluated, and the greatest efficiency was observed with sonication in 100% ethanol. Elemental compositions of the five marker compounds were determined by high-resolution mass spectroscopy. The dynamic range of the HPLC-UV method depended on the specific analyte, and acceptable quantitation was obtained between 10 and 250 μg mL−1 for oleanolic acid, between 10 and 300 μg mL−1 for ursolic acid, between 3 and 75 μg mL−1 for 2α,3α,24-trihydroxyolean-12en-28oic acid, between 5 and 100 μg mL−1 for euscaphic acid, and between 5 and 100 μg mL−1 for 2α,3α-dihydroxyurs-12en-28oic acid. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision (relative standard deviation <9.4%). Overall limits of quantitation and detection were approximately 0.5-2.5 μg mL−1 at a signal-to-noise ratio (S/N) of 3 and were about 3.0-10.0 μg mL−1 at a S/N of 10. In addition, principal component analysis (PCA) was performed on the analytical data of 15 different P. Spica samples in order to classify samples collected from different regions.  相似文献   

15.
A rapid screening procedure is described for the simultaneous determination of 13 β-blockers in urine at the range of 0.010-1.0 μg mL−1. The procedure involves N-ethoxycarbonyl (EOC) derivatization of β-blockers in urine sample, followed by extraction and further conversion to trimethylsilyl (TMS) derivatives for the analysis by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode (GC-SIM-MS). The characteristic fragment ions at m/z 260 and m/z 144, and [M − 15]+ ions permitted sensitive and selective detection of most of the β-blockers in the presence of co-extracted urinary amino alcohols at much higher levels. The whole procedure of EOC/TMS derivatization with subsequent GC-SIM-MS analysis was linear (r ≥ 0.9988). The LODs were varied from 0.03 to 2.7 ng mL−1. The ranges of precision (%relative standard deviation) and accuracy (%relative error) of the overall procedure at two different added amounts (0.02 and 0.5 μg mL−1) in urine matrix varied from 1.3 to 9.4 and from −9.6 to 9.7, respectively. The recoveries were measured to be ranged from 90.4 to 109.7%.  相似文献   

16.
A DNA-based surface plasmon resonance biosensor for enrofloxacin was developed. Heating denatured DNA immobilized on the gold-coated glass surface was exploited. The immobilization was performed by a layer-by-layer co-deposition with a cationic polymer. The sensor performance was tested with real biological probes. Direct and simple determination of enrofloxacin in milk samples was demonstrated. The sensor response obeys Langmuir binding isotherm being almost linear until about 20 μg mL−1. The detection limit in milk samples was estimated to be 3 μg mL−1.  相似文献   

17.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

18.
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes (MWCNTs)/Nafion was developed and applied for the extraction of polar aromatic compounds (PACs) in natural water samples. The characteristics and the application of this fiber were investigated. Electron microscope photographs indicated that the MWCNTs/Nafion coating with average thickness of 12.5 μm was homogeneous and porous. The MWCNTs/Nafion coated fiber exhibited higher extraction efficiency towards polar aromatic compounds compared to an 85 μm commercial PA fiber. SPME experimental conditions, such as fiber coating, extraction time, stirring rate, desorption temperature and desorption time, were optimized in order to improve the extraction efficiency. The calibration curves were linear from 0.01 to 10 μg mL−1 for five PACs studied except p-nitroaniline (from 0.005 to 10 μg mL−1) and m-cresol (from 0.001 to 10 μg mL−1), and detection limits were within the range of 0.03–0.57 ng mL−1. Single fiber and fiber-to-fiber reproducibility were less than 7.5 (n = 7) and 10.0% (n = 5), respectively. The recovery of the PACs spiked in natural water samples at 1 μg mL−1 ranged from 83.3 to 106.0%.  相似文献   

19.
Rohypnol (flunitrazepam) has been successfully determined in coffee by high performance liquid chromatography dual electrode detection (LC-DED) in the dual reductive mode. Initial studies were performed to optimise the chromatographic conditions and these were found to be 50% acetonitrile, 50% 50 mM pH 2.0 phosphate buffer at a flow rate of 0.75 mL min−1, employing a Hypersil C18, 5 μm, 250 mm × 4.6 mm column. Cyclic voltammetric studies were made to ascertain the redox behaviour of Rohypnol at a glassy carbon electrode over the pH range 2–12. Hydrodynamic voltammetry was used to optimise the applied potential at the generator and detector cells; these were identified to be −2.4 V and +0.8 V for the redox mode and −2.4 V and −0.1 V for the dual reductive mode respectively. A linear range of 0.5–100 μg mL−1, with a detection limit of 20 ng mL−1 was obtained for the dual reductive mode. Further studies were then performed to identify the optimum conditions required for the LC-DED determination of Rohypnol in beverage samples. A convenient and rapid method for the determination of Rohypnol in beverage samples was developed using a simple sample pre-treatment procedure. A recovery of 95.5% was achieved for a sample of white coffee fortified at 9.6 μg mL−1 Rohypnol.  相似文献   

20.
A simple, inexpensive and reagent-less colorimetric micro flow analysis (μFA) system was implemented in a polymethyl methacrylate (PMMA) micro fluidic manifold. A T-shaped micro channel on a PMMA chip was fabricated by laser ablation and topped with molded polydimethylsiloxane (PDMS). The fabricated μFA system was integrated with the optical components as detector and applied to the determination of iron in water samples. It is based on the measurement of Fe(III)-nitroso-R salt complex at 720 nm formed by the reaction between Fe(III) and nitroso-R salt in an acetate buffer solution pH 5. The proposed μFA consumed very small amount of reagent and sample, it released waste of less than 2.0 mL h−1. The relative standard deviation (R.S.D.) was less than 2% (n = 11) with the recovery of 98.7 ± 0.12 (n = 5). The linear range for the determination of iron in water samples was over the range of 0.05-4.0 μg mL−1 with a correlation coefficient (r2) of 0.9994. The limit of detection (3σ) and limit of quantitation (10σ) were 0.021 μg mL−1 and 0.081 μg mL−1, respectively with a sample throughput of 40 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号