首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid chromatography/mass spectrometry (LC/MS) method for the determination of carbonyl compounds based on derivatization with N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH) has been developed. Atmospheric pressure chemical ionization (APCI) in the positive mode proved the most versatile ionization technique for MNBD-hydrazones. APCI/MS spectra were recorded and the detection limits were determined for [M+H]+. 13C2 acetaldehyde MNBD-hydrazone has been synthesized and characterized. It is applied as internal standard for the quantification of acetaldehyde. Tobacco smoke has been investigated concerning its carbonyl content. Acetaldehyde was identified as main product and quantified by LC/MS using internal standardization. The result is in good agreement to quantification data obtained with UV/vis detection.  相似文献   

2.
The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC–MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time‐of‐flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)‐derivatized compounds have been investigated. The use of GC–APCI–MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H]+), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H]+, [M+H‐H2O]+ and [M+H‐2·H2O]+ for underivatized AAS and [M+H]+, [M+H‐TMSOH]+ and [M+H‐2·TMSOH]+ for TMS‐derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS‐based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Quantification of trace concentrations of transformation products of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in water requires complex analytical instrumentation and tedious sample preparation. The goal of this research was to develop a simple and automated method for sensitive quantification of UDMH transformation products in water using headspace (HS) solid-phase microextraction (SPME) in combination with GC-MS and GC-MS/MS. HS SPME is based on extraction of analytes from a gas phase above samples by a micro polymer coating followed by a thermal desorption of analytes in a GC inlet. Extraction by 85 µm Carboxen/polydimethylsiloxane fiber at 50 °C during 60 min provides the best combination of sensitivity and precision. Tandem mass spectrometric detection with positive chemical ionization improves method accuracy and selectivity. Detection limits of twelve analytes by GC-MS/MS with chemical ionization are about 10 ng L?1. GC-MS provides similar detection limits for five studied analytes; however, the list of analytes detected by this method can be further expanded. Accuracies determined by GC-MS were in the range of 75–125% for six analytes. Compared to other available methods based on non-SPME sample preparation approaches (e.g., liquid–liquid and solid-phase extraction), the developed method is simpler, automated and provides lower detection limits. It covers more UDMH transformation products than available SPME-based methods. The list of analytes could be further expanded if new standards become available. The developed method is recommended for assessing water quality in the territories affected by space activities and other related studies.  相似文献   

4.
Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds.  相似文献   

5.
On-line atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) liquid chromatography/mass spectrometry (LC/MS) were evaluated for the analysis of a variety of steroids. Steroids were classified into three major groups based on the spectra and the sensitivities observed: (I) those containing a 3-one, 4-ene functional group, (II) those containing at least one ketone group without conjugation, and (III) those containing hydroxy group(s) only. In the APCI mode, the best sensitivity and the lowest detection limit for all three groups were obtained by using a mobile phase consisting of methanol and 1%–2% acetic acid in water. The APCI spectra were characterized by MH+, MH+-H2O, MH+-2H2O, etc., with the degree of H2O loss being compound dependent: group I steroids produced stable MH+ and group III steroids showed extensive water loss. In the electrospray mode the best sensitivity and the lowest detection limit for the first two groups were obtained when pure methanol and water were used as the mobile phase. This condition produced abundant stable MNa+ due to ubiquitous sodium. Detection limits in the 5–15 pg range can be easily achieved using ESI LC/MS. Addition of ammonium acetate or use of acetonitrile in the mobile phase, common in the LC/MS analysis of steroids, decreased the sensitivity for the group I and II steroids and thus should be avoided. For group III steroids, the detection limit can be improved by the addition of acetic acid to the mobile phase.  相似文献   

6.
Indirect ultraviolet detection was conducted in ultraviolet‐absorption‐agent‐added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li+, Na+, K+, and NH4+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography‐indirect ultraviolet detection. The successful separation and detection of Li+, Na+, K+, and NH4+ within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.  相似文献   

7.
基体辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)法因其具有测定质量范围大、灵敏度高、速度快及精确度好等优点,近年来已成为测定多肽、蛋白质、核酸、多糖等生物大分子分子量及其一级结构的有力工具.  相似文献   

8.
The effect of background derivatization on the signal enhancement of pesticide residues extracted from edible oil samples was studied by GC with negative chemical ionization MS. The analytes were extracted by a solvent extraction process, and the extract was subjected to rapid low‐temperature fat precipitation. The residual fatty acids were silylated by derivatization with N,O‐bis(trimethylsilyl)trifluoroacetamide. The chromatograms obtained from the derivatized samples showed higher signal intensity and lower detection levels when compared to the direct analysis without derivatization. The sensitivity levels of the method are either better or comparable to that of previously reported methodologies. The LODs of the analyzed organochlorine, organophosphorus, and synthetic pyrethroid residues in sunflower, rice bran, and ground oil samples were in the range of 0.02–0.5 ng/g, and the LOQs were in the range of 0.1–2 ng/g. The intraday and interday accuracies were in the range of 81–116% with RSDs less than 14%. The recoveries obtained were in the range of 53–89% with the RSD values less than 13% for all the studied pesticide residues.  相似文献   

9.
The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid–liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H]+ or [M + H-2TMSOH]+ ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL−1. Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected.  相似文献   

10.
The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]+) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H]+ ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d15 provided evidence that [M+H]+ production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H]+ ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.  相似文献   

11.
A generic LC-MS/MS method was developed for the analysis of potentially genotoxic alkyl halides. A broad selection of alkyl halides were derivatized using 4-dimethylaminopyridine in acetonitrile. The reaction conditions for derivatization, i.e., solvent, reaction time, temperature and concentration of alkyl halide, active pharmaceutical ingredient (API), and reagent, were optimized for sensitivity and robustness. The interference of the matrix and the API and the presence of water on the derivatization reaction were investigated for a model drug product (paracetamol/caffeine tablets). Hydrophilic interaction liquid chromatography was used to allow a quantitative determination of the derivatives by tandem mass spectrometry. The derivatization reaction was shown to be selective for alkyl halides, although some reactivity was also observed for an aromatic sulfonate, which is also genotoxic. Even though differences in reaction efficiencies have been observed, the enhanced sensitivity obtained by the derivatization allows the majority of the alkyl halides to be detected by MS/MS at relevant levels for genotoxic impurity evaluation, i.e., 10 mg kg(-1). Another key advantage is that for the majority of derivatives, reagent-related fragments are produced, which allows low-level screening for alkyl halides. Highly specific MS detection can be performed using neutral loss and precursor ion scan experiments. The applicability of a generic screening method will make the genotox evaluation less dependent on the quality of assessments based on predictions only, and it will provide essential information during the development of new chemical entities. In addition to screening, target analysis in the low milligrams per kilogram range can be performed. A similar response of the derivatized compounds was obtained in the range of 1-100 mg kg(-1) with a reproducibility better than 10%, which is sufficient for the determination of alkyl halides in APIs and drug products.  相似文献   

12.
Organophosphate esters (OPEs) are chemical compounds incorporated into materials as flame‐proof and/or plasticizing agents. In this work, 13 non‐halogenated and 5 halogenated OPEs were studied. Their mass spectra were interpreted and compared in terms of fragmentation patterns and dominant ions via various ionization techniques [electron ionization (EI) and chemical ionization (CI) under vacuum and corona discharge atmospheric pressure chemical ionization (APCI)] on gas chromatography coupled to mass spectrometry (GC‐MS). The novelty of this paper relies on the investigation of APCI technique for the analysis of OPEs via favored protonation mechanism, where the mass spectra were mostly dominated by the quasi‐molecular ion [M + H]+. The EI mass spectra were dominated by ions such as [H4PO4]+, [M–R]+, [M–Cl]+, and [M–Br]+, and for some non‐halogenated aryl OPEs, [M]+● was also observed. The CI mass spectra in positive mode were dominated by [M + H]+ and sometimes by [M–R]+, while in negative mode, [M–R] and more particularly [X] and [X2]‐● were mainly observed for the halogenated OPEs. Both EI and APCI techniques showed promising results for further development of instrumental method operating in selective reaction monitoring mode. Instrumental detection limits by using APCI mode were 2.5 to 25 times lower than using EI mode for the non‐brominated OPEs, while they were determined at 50‐100 times lower by the APCI mode than by the EI mode, for the two brominated OPEs. The method was applied to fish samples, and monitored transitions by using APCI mode showed higher specificity but lower stability compared with EI mode. The sensitivity in terms of signal‐to‐noise ratio varying from one compound to another. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We have developed a method for the determination of melamine (MEL), ammeline (AMN), and ammelide (AMD) by surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) using gold nanoparticles (Au NPs). The major peaks for MEL, AMN, and AMD at m/z 127.07, 128.05, and 129.04 are assigned to the [MEL + H]+, [AMN + H]+, and [AMD + H]+ ions. Because the three tested compounds adsorb weakly onto the surfaces of the Au NPs through Au–N bonding, they can be easily concentrated from complex samples by applying a simple trapping/centrifugation process. The SALDI‐MS method provides limits of detection of 5, 10, and 300 nM for MEL, AMN, and AMD, respectively, at a signal‐to‐noise ratio of 3. The signal variation for 150‐shot average spectra of the three analytes within the same spot was 15%, and the batch‐to‐batch variation was 20%. We have validated the practicality of this approach by the analysis of these three analytes in infant formula and grain powder. This simple and rapid SALDI‐MS approach holds great potential for screening of MEL in foods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A divided probe that incorporates a potassium aluminosilicate glass target and an analyte/glycerol matrix target, spatially separated, was used to inject potassium ions (K+) into the high-pressure “selvedge” region formed above the analyte/glycerol matrix target during fast-atom bombardment (FAB); [M+K]+ adduct ions that represent the types of gas-phase neutral molecules present in the selvedge region are observed. Computer modeling assisted in designing the divided target and an additional ion optical element for the FAB ion source to optimize interactions between K+ ions and the desorbed neutral molecules. The capability of injecting K+ ions into the FAB experiment has utility in both mechanistic studies and analyses. Experimental results here are consistent with a model for the desorption/ionization processes in FAB in which some types of neutral analyte molecules are desorbed intact and are subsequently protonated by glycerol chemical ionization. Unstable protonated molecules undergo unimolecular decomposition to yield observed fragment ions. The use of K+ cationization of analytes for molecular weight confirmation is demonstrated, as well as its utility in FAB experiments in which mixtures are encountered.  相似文献   

15.
Ambient ionization is the new revolution in mass spectrometry (MS). A microwave plasma produced by a microwave plasma torch (MPT) at atmospheric pressure was directly used for ambient mass spectrometric analysis. H3O+ and NH4+ and their water clusters from the background are formed and create protonated molecules and ammoniated molecules of the analytes. In the full‐scan mass spectra, both the quasi‐molecular ions of the analytes and their characteristic ionic fragments are obtained and provide evidence of the analyte. The successful detection of active compounds in both medicine and garlic proves that MPT has the efficient desorption/ionization capability to analyze solid samples. The obtained decay curve of nicotine in exhaled breath indicates that MPT‐MS is a useful tool for monitoring gas samples in real time. These results showed that the MPT, with the advantages of stable plasma, minimal optimization, easy, solvent‐free operation, and no pretreatment, is another potential technique for ambient MS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A new derivatization high-performance liquid chromatography method with ultraviolet detection was developed and validated for the quantitative analysis of methanesulfonate genotoxic impurities in an innovative drug for the treatment of non-alcoholic fatty liver disease. In this study, sodium dibenzyldithiocarbamate was used as a derivatization reagent for the first time to enhance the sensitivity of the analysis, and NaOH aqueous solution was chosen as a pH regulator to avoid the interference of the drug matrix. Several key experimental parameters of the derivatization reaction were investigated and optimized. In addition, specificity, linearity, precision, stability, and accuracy were validated. The determined results of the samples were consistent with those obtained from the derivatization gas chromatography–mass spectrometry analysis. Thus, the proposed method is a reliable and practical protocol for the determination of trace methanesulfonate genotoxic impurities in drugs containing mesylate groups.  相似文献   

17.
In this study, MTBSTFA and BSTFA, which are among the preferred derivatization reagents for silylation were both tested on derivatization of six different groups of polar chemicals to get information about usefulness in terms of sensitivity and specificity of both reagents. Tested compound groups were nitrophenols and methoxyphenols, sterols and sugars, dicarboxylic acids and hydroxylated polycyclic aromatic hydrocarbons.It was found that MTBSTFA-derivates produce characteristic fragmentation patterns presenting mainly the fragments [M]+, [M−57]+ and [M−131]+, of which [M−57]+ is generally dominant on the mass spectrogram. BSTFA-derivates mainly show the fragments [M]+, [M−15]+ and [M−89]+ whereof the molecular ion [M]+ is generally dominant. It was also found that steric hindrance and molecular mass play a very important role in the choice of the best suited derivatization reagent: compounds with sterically hindered sites derivatized with MTBSTFA produce very small analytical responses or no signal at all, and compounds with high molecular mass produce no characteristic fragmentation pattern when derivatization is performed with BSTFA.It was also found that MTBSTFA-derivatization facilitates separation of isomer analytes, suggesting its choice in combination to semi-polar columns, whilst BSTFA seems better for sterically hindered compounds.Findings were confirmed with applications of both reagents to biological and environmental matrices (urine and atmospheric aerosols).  相似文献   

18.
Electron ionization (EI) spectra and both positive and negative chemical ionization (CI) spectra have been obtained for four isoquinolinium ylides and two pyridinium ylides. Electron transfer reactions dominate the CI mass specra. The base peak in negative chemical ionization is the [M] ion, formed by electron capture. In the positive methane CI spectra the molecular ion, [M], is relatively more intense than [MH]+ showing electron transfer to be the main positive ionization process. In the positive ammonia CI spectra, proton transfer to give [MH]+ is the main ionization process, but electron transfer is also observed. The EI spectra show fragmentations in which the aromatic nitrogen moiety retains the charge and fragmentation is by loss of radicals or small neutral molecules from the side-chains. Radical driven reactions are proposed to explain these spectra.  相似文献   

19.
Structural elucidation of metabolites is an important part during the discovery and development process of new pharmaceutical drugs. Liquid Chromatography (LC) in combination with Mass Spectrometry (MS) is usually the technique of choice for structural identification but cannot always provide precise structural identification of the studied metabolite (e.g. site of hydroxylation and site of glucuronidation). In order to identify those metabolites, different approaches are used combined with MS data including nuclear magnetic resonance, hydrogen/deuterium exchange and chemical derivatization followed by LC‐MS. Those techniques are often time‐consuming and/or require extra sample pre‐treatment. In this paper, a fast and easy to set up tool using desorption electrospray ionization–MS for metabolite identification is presented. In the developed method, analytes in solution are simply dried on a glass plate with printed Teflon spots and then a single drop of derivatization mixture is added. Once the spot is dried, the derivatized compound is analyzed. Six classic chemical derivatizations were adjusted to work as a one drop reaction and applied on a list of compounds with relevant functional groups. Subsequently, two successive reactions on a single spot of amoxicillin were tested and the methodology described was successfully applied on an in vitro incubated alprazolam metabolite. All reactions and analyses were performed within an hour and gave useful structural information by derivatizing functional groups, making the method a time‐saving and efficient tool for metabolite identification if used in addition or in some cases as an alternative to common methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here, we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix‐assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4‐hydroxy‐3‐methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high‐mass resolution and MSn IMS. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high‐performance liquid chromatography (HPLC)‐MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号