首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A personal-computer program (DryLab G) is described for the simulation of reversed-phase gradient-elution separations. After two experimental gradient runs are carried out initially, this program allows the user to develop a final separation by varying gradient conditions (gradient time, initial and final %-organic in the mobile phase, gradient shape), column dimensions, flowrate and particle size. This approach takes advantage of “solvent-strength selectivity”, as reported recently [28] for isocratic separations. Method development using this procedure can result in better separations with much less effort. Examples of its validation and application are presented.  相似文献   

2.
The effect of combining sub-2 microm porous particles with elevated operating temperatures on chromatographic performance has been investigated in terms of chromatographic efficiency, productivity, peak elution order, and observed operating pressure. The use of elevated temperature in LC does not increase the obtainable performance but allows the same performance to be obtained in less time. Increasing the column temperature did allow the use of longer columns, generating column efficiencies in excess of 100,000 plates and gradient peak capacities approaching 1000. Raising the temperature increased the optimal mobile phase linear velocity, negating somewhat the pressure benefits observed by reducing the solvent viscosity. When operating at higher temperature the analyte retention is not only reduced, but the order of elution will also often change. High temperature separations allowed exotic organic modifiers such as isopropanol to be exploited for alternative selectivity and faster analysis. Finally, care must be taken when using high temperature separations to ensure that the narrow peak widths produced do not compromise the quality of data obtained from detectors such as high resolution mass spectrometers.  相似文献   

3.
In electrochromatography, solvent electrophoretic mobility and solute partitioning are temperature dependent processes. If temperature variations are controlled, solute selectivity and analysis times can be tailored. In this study the feasibility of temperature programming in capillary electrochromatography (CEC) was demonstrated using a reversed-phase CEC mode. The outcome of programmed separations was compared with isothermal, isocratic and isorheic (constant flow) separations. The combined effects of column temperature and mobile phase flow-rate changes during the separation run, resulted in up to a 50% reduction in the separation run time, without adversely affecting the quality of separation. For capillary electrochromatography, temperature programming may be a valuable alternative to solvent programming modes because of the great technical difficulties associated with carrying out solvent gradient elution.  相似文献   

4.
We explored chromatographic conditions to obtain high resolution in protein separations by ion-exchange chromatography (IEC) on a nonporous anion-exchange resin of 2.5 microm in particle diameter. We studied the effects of gradient time (steepness of salt concentration gradient), flow-rate and column length on resolution in much wider ranges than had been studied before. It was found that two distinct conditions exist that provide high resolution. The first is a condition which has widely been employed in current high-performance IEC, namely, a combination of short gradient time, high flow-rate and comparatively short column. Separation times are usually 5-30 min, and even more rapid (1-2 min) separations are possible. The second is the condition which has rarely been employed in high-performance IEC. It is a combination of long gradient time, low flow-rate and long column. Although it takes several hours for one separation, very high resolution is attainable.  相似文献   

5.
The responses of four different types of aerosol detectors have been evaluated and compared to establish their potential use as a universal detector in conjunction with ultra high pressure liquid chromatography (UHPLC). Two charged-aerosol detectors, namely Corona CAD and Corona Ultra, and also two different types of light-scattering detectors (an evaporative light scattering detector, and a nano-quantity analyte detector [NQAD]) were evaluated. The responses of these detectors were systematically investigated under changing experimental and instrumental parameters, such as the mobile phase flow-rate, analyte concentration, mobile phase composition, nebulizer temperature, evaporator temperature, evaporator gas flow-rate and instrumental signal filtering after detection. It was found that these parameters exerted non-linear effects on the responses of the aerosol detectors and must therefore be considered when designing analytical separation conditions, particularly when gradient elution is performed. Identical reversed-phase gradient separations were compared on all four aerosol detectors and further compared with UV detection at 200 nm. The aerosol detectors were able to detect all 11 analytes in a test set comprising species having a variety of physicochemical properties, whilst UV detection was applicable only to those analytes containing chromophores. The reproducibility of the detector response for 11 analytes over 10 consecutive separations was found to be approximately 5% for the charged-aerosol detectors and approximately 11% for the light-scattering detectors. The tested analytes included semi-volatile species which exhibited a more variable response on the aerosol detectors. Peak efficiencies were generally better on the aerosol detectors in comparison to UV detection and particularly so for the light-scattering detectors which exhibited efficiencies of around 110,000 plates per metre. Limits of detection were calculated using different mobile phase compositions and the NQAD detector was found to be the most sensitive (LOD of 10 ng/mL), followed by the Corona CAD (76 ng/mL), then UV detection at 200 nm (178 ng/mL) using an injection volume of 25 μL.  相似文献   

6.
The feasibility of coupling high-temperature liquid chromatography (HTLC) to flame ionization detection (FID) has been studied. FID parameter values (hydrogen flow-rate, air flow-rate and FID temperature), typically set in gas chromatography are rarely suitable for liquid chromatography. Best values depend obviously on the water flow rate which is defined depending on both column temperature and column internal diameter. The FID parameters were optimized according to the water flow-rate by means of an experimental design. The potential of the method is shown with some alcohol separations and the value of increasing column temperature while reducing the column diameter is highlighted.  相似文献   

7.
单亦初  张玉奎  赵瑞环 《色谱》2002,20(4):289-294
 根据溶质在柱内的迁移规律 ,建立了一种利用线性梯度实验快速获得溶质保留值方程系数 ,然后以串行响应函数为优化指标进行多台阶梯度分离条件优化的方法。与利用等度实验获得保留值方程的方法相比 ,该法可以大大缩短优化时间。通过该方法对芳香胺和衍生化氨基酸样品进行了分离 ,获得了满意的分离度 ,表明该方法的预测精度很好。  相似文献   

8.
We explored chromatographic conditions to obtain high resolution in protein separations by ion-exchange chromatography (IEC) on a macroporous anion-exchange resin of 10 microm in particle diameter. We studied effects of flow-rate, gradient time (steepness of salt concentration gradient) and column length on resolution in wide ranges. It was found that very high resolutions are attainable at long gradient times with long columns. The resolution continuously became higher as the gradient time and the column length became longer except in some special cases. The dependence of resolution on gradient time was particularly great when the column was long and the gradient time for the change of 0-0.5 M NaCl was longer than 2 h. On the other hand, the effect of flow-rate on resolution was very small. Although the separations at long gradient times with long columns have not been popular in high-performance IEC and it takes several hours for one separation, such separations should be advantageous when very high resolutions are required like in proteomics research.  相似文献   

9.
To obtain the best compromise between peak capacity and analysis time in one-dimensional and two-dimensional (2D) liquid chromatography (LC), column technology and operating conditions were optimized. The effects of gradient time, flow rate, column temperature, and column length were investigated in one-dimensional reversed-phase (RP) gradient nano-LC, with the aim of maximizing the peak per unit time for peptide separations. An off-line two-dimensional LC approach was developed using a micro-fractionation option of the autosampler, which allowed automatic fractionation of peptides after a first-dimension ion-exchange separation and re-injection of the fractions onto a second-dimension RP nano-LC column. Under the applied conditions, which included a preconcentration/desalting time of 5 min, and a column equilibration time of 12.5 min, the highest peak capacity per unit time in the 2D-LC mode was obtained when applying a short (10 min) first-dimension gradient and second-dimension RP gradients of 20 min duration. For separations requiring a maximum peak capacity of 375, one-dimensional LC was found to be superior to the off-line strong cation-exchange/×/RPLC approach in terms of analysis time. Although a peak capacity of 450 could be obtained in one-dimensional LC when applying 120-min gradients on 500-mm long columns packed with 3-μm particles, for separations requiring a peak capacity higher than 375 2D-LC experiments provide a higher peak capacity per unit time. Finally, the potential of off-line 2D-LC coupled to tandem mass spectrometry detection is demonstrated with the analysis of a tryptic digest of a mixture of nine proteins and an Escherichia coli digest.  相似文献   

10.
The optimum conditions for the purification of proteins by gradient elution in reversed-phase liquid chromatography were studied, with emphasis on the column length. Because of the strong dependence of the retention of proteins on the mobile phase composition, very short columns can be used successfully to perform analytical separations. A similar conclusion is extended to preparative separations. Columns with different lengths and diameters were used. The dependence of the loading capacity for touching band separation on the column length, diameter and volume was studied, in addition to the regeneration time between successive runs, the starting mobile phase composition and the necessary column efficiency.  相似文献   

11.
Programming inlet pressure in gas chromatography permits to decrease the analysis time without changing the elution order of compounds of different polarity whose relative retention changes with changing temperature. The choice of the best values of the inlet pressure and flow-rate of the carrier gas often requires many preliminary analyses with different parameters to be carried out. A method for the prediction of the separation by starting from few experimental data measured in isothermal and isobaric conditions decreases the time required for the optimisation of the analysis. The efficiency of the separation depends on the change of the theoretical plate height at various pressures and temperatures, due to pressure drop along the column. By calculation of the diffusion coefficients of the analysed compounds into the mobile and stationary phase it is possible to evaluate the column efficiency and predict the number of theoretical plates at any inlet pressure. A procedure for the prediction of the plate height of a capillary column at any inlet pressure of the carrier gas and column temperature by using retention data of polar and non-polar compounds (1-alcohols and linear alkanes) obtained in few isobaric runs is described.  相似文献   

12.
Abstract

A μ-Bondapak C-18 column separates, by reverse phase process, mono, di and oligosaccharides within 40 min when water is used as eluent. The fractionation capabilities of this column are a function of experimental conditions (temperature and flow-rate). Chromatograms showing separations obtained for different carbohydrate mixtures are presented and discussed in terms of solubility parameters.  相似文献   

13.
Río-Segade S  Bendicho C 《Talanta》1999,48(2):477-484
A reversed-phase high-performance liquid chromatography (HPLC) method with cold vapor atomic absorption spectrometry (CV-AAS) detection is developed for mercury speciation. In this paper, the efficiency of tetrabutylammonium bromide reagent and sodium chloride in a methanol-water mixture as mobile phase is evaluated for HPLC separation of methylmercury and inorganic mercury coupled with on-line CV-AAS determination. Both mercury species are separated on a reversed-phase C(18) column. Several parameters (e.g. composition and flow-rate of mobile phase) are investigated for the optimization of HPLC separations. CV-AAS technique parameters are also studied for their effect on sensitivity (sodium borohydride and sodium hydroxide concentrations in the reducing agent, reducing agent flow-rate, length of the reduction coil and nitrogen flow-rate). Quantitative recoveries for both inorganic mercury and methylmercury are obtained from a spiked natural water sample.  相似文献   

14.
Reversed-phase liquid chromatography (RPLC) is very widely used for the separation and characterization of proteins and peptides. A novel type of highly stable silica-based stationary phase has been developed for protein separations. A dense monolayer of dimethyl-(chloromethyl)phenylethyl)-chlorosilane (DM-CMPES) on the surface of silica is "hyper-crosslinked" with a polyfunctional aromatic crosslinker through Friedel-Crafts chemistry resulting in stationary phases with extraordinary stability in acidic media. Elemental analysis data confirm the high degree of cross-linking among the surface groups. The hyper-crosslinked phases are extremely stable under highly acidic mobile phase conditions even at a temperature as high as 150 degrees C. A wide-pore (300 A) material made in this way is used here to separate proteins by a reversed-phase mechanism and compared to a commercially available "sterically protected" C18 phase. For small molecules, including neutral and basic compounds, these crosslinked phases give comparable peak shape and efficiency to the commercial phase. Our results show that no pore blockage takes place as commonly afflicts polymer coated phases. In consequence, protein separations on the new phases are acceptable. Using strong ion-pairing reagents, such as HPF6, improves the separation efficiency. Compared to the commercial phases, these new phases can be used at lower pHs and much higher temperatures thereby enabling much faster separations which is the primary focus of this work. Better efficiency for proteins was obtained at high temperature. However, at conventional linear velocities the instability of proteins at high temperature becomes a problem which establishes an upper temperature limit. Uses of a narrowbore column and high flow rates both solves this problem by reducing the time that proteins spend on the hot column and, of course, speeds up the separation of the protein mixture. Finally, an ultrafast gradient (<1 min) protein separation was obtained by utilizing the high temperature and thus high linear velocities afforded by the extreme stability of these new phases. The phases are stable even after 50h of exposure to 0.1% TFA at 120 degrees C. This paper is dedicated to the memory of Csaba Horvath whose work in high temperature HPLC inspired the development of the stationary phases described here.  相似文献   

15.
By optimizing column temperature T and gradient time tG, complex samples can often be separated by means of reversed-phase high-performance liquid chromatography (RP-LC). Conclusions reached in Part I suggest that the complete separation of such samples will be difficult, however, when more than 15-20 components are present in the sample. An alternative approach is to carry out two separations with different conditions (T, tG) in each run. The combination of results from these two runs then allows the total analysis of the sample, providing that every sample component is adequately resolved in one run or the other. Examples of this approach, carried out by means of computer simulation, are shown here for several samples of varying complexity. Also considered is the ability of a single separation where T and tG are optimized to enable the separation and analysis of one or more individual sample components from complex mixtures (e.g., drugs in animal plasma), including the resolution of isomeric compounds from each other.  相似文献   

16.
Organic acids with very low pKa require extremely low pH conditions to achieve adequate retention in reversed‐phase liquid chromatography, but an extremely low pH mobile phase can cause instrument reliability problems and limit the choice of columns. Hydrophilic interaction chromatography is a potential alternative to reversed‐phase liquid chromatography for the separation of organic acids using more moderate conditions. However, the hydrophilic interaction chromatography separation mechanism is known to be very complex and involves multiple competing mechanisms. In the present study, a hydrophilic interaction chromatography column packed with bare silica core–shell particles was used as the separation column and six agricultural organic acids were used as model analytes to evaluate the effects of buffer concentration, buffer pH, and temperature on sample loading capacity, selectivity, retention, and repeatability. It was found that using a higher concentration of buffer can lead to a significant improvement in the overall performance and reproducibility of the separation. Investigation of column equilibration time revealed that a very long equilibration time is needed when changing mobile phase conditions in between runs. This limitation needs to be acknowledged in hydrophilic interaction chromatography method development and sufficient equilibration time needs to be allowed in method scouting.  相似文献   

17.
18.
We describe a liquid chromatography method development approach for the separation of intact proteins using hydrophobic interaction chromatography. First, protein retention was determined as function of the salt concentration by isocratic measurements and modeled using linear regression. The error between measured and predicted retention factors was studied while varying gradient time (between 15 and 120 min) and gradient starting conditions, and ranged between 2 and 15%. To reduce the time needed to develop optimized gradient methods for hydrophobic interaction chromatography separations, retention‐time estimations were also assessed based on two gradient scouting runs, resulting in significantly improved retention‐time predictions (average error < 2.5%) when varying gradient time. When starting the scouting gradient at lower salt concentrations (stronger eluent), retention time prediction became inaccurate in contrast to predictions based on isocratic runs. Application of three scouting runs and a nonlinear model, incorporating the effects of gradient duration and mobile‐phase composition at the start of the gradient, provides accurate results (improved fitting compared to the linear solvent‐strength model) with an average error of 1.0% and maximum deviation of –8.3%. Finally, gradient scouting runs and retention‐time modeling have been applied for the optimization of a critical‐pair protein isoform separation encountered in a biotechnological sample.  相似文献   

19.
The simultaneous temperature and inlet pressure programming (TPP) in gas chromatographic analysis decreases the retention time and the maximum value of temperature required for the elution of high boiling substances. Therefore, compounds sensitive to thermal degradation can be better analysed and column ageing is reduced. However, the empirical choice of proper analysis conditions requires many preliminary runs; this paper describes a procedure for the theoretical prediction of retention times in TPP using few preliminary runs carried out in isobaric and isothermal conditions. The used program permits the prediction of the retention times of the compounds analysed with any different TPP run carried out within the temperature and pressure ranges investigated with the preliminary runs. The influence of various analytical parameters on the accuracy of the prediction values was investigated. The proposed model also predicts the relative position in the chromatogram of closely eluting peaks and the possible coincidence of retention times or inversion of the elution order with changing temperature. It is also possible to foresee the analytical conditions, which offer a baseline separation of all of the peaks of the sample.  相似文献   

20.
The aim of presented work is to describe simple, fast and robust temperature-controlled system for non-forced-flow micro-planar chromatography. With this separation system the micro-TLC plates can be developed in horizontal position under temperature gradient or non-gradient as well as saturated or unsaturated chamber conditions using low amount of mobile phase ranging from 0.3 to 1.0 mL. The device may work at wide range of temperatures from -20 to 80 degrees C. Under such conditions the plate temperature equilibration can be obtained within 5-12 min and a typical non-forced flow run can be finished within short period of time ranging from 5 to 20 min. It has been revealed that micro-plate is capable to separate more than 10 spots in one direction or up to 180 spots per plate for two-dimensional and multi-development runs. Particularly, fast and efficient separation of number of analytes including fullerenes, cyclodextrins and steroids as well as complex samples obtained from natural products and pharmaceutical formulations was demonstrated. Moreover, the application of thermostated micro-planar chromatography for the retention and quantification studies is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号