首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method using high performance liquid chromatography–electrospray tandem mass spectrometry (LC–ESI-MS/MS) in positive ion mode was developed for the simultaneous analysis of 30 phenolic compounds, including four estrogens, bisphenol A (BPA), 10 hydroxylated polybrominated dephenyl ethers (OH-PBDEs) and 15 bromophenols (BRPs), in blood plasma. In the present method, derivatization with dansyl chloride was employed, and all the derivertized target compounds were well resolved on a 100 mm Xbridge C18 column with acetonitrile and 0.1% formic acid as the mobile phases. Purification procedures, such as liquid–liquid extraction and silica-gel chromatography, were applied to reduce matrix effects in the sample extract and remove excess derivatizing reagents, thus permitting selective and sensitive detection of the target phenolic compounds. The limit of quantification for all analytes, with a signal-to-noise ratio of ∼10, was 2–30 pg/g (plasma weight) except for 6-OH-BDE-137 (30 pg/g) and 3-BRP (60 pg/g). The method was validated for recoveries (68–100%), accuracy (84–110%) and precision (3.7–11%) using charcoal-stripped bovine blood plasma spiked with all target compounds (500 and 5000 pg/mL). Finally, the method was applied to analyze six blood plasma samples from frogs and cormorants, where two natural estrogens, one BPA, one OH-PBDE and four BRPs were detected. The greatest total concentrations of estrogens coincided with the least total concentrations of other phenolic compounds for both species. The proposed method based on derivatization followed by LC–MS/MS provides a novel method to simultaneously monitor multiple groups of phenolic compounds in blood plasma.  相似文献   

2.
A general approach for discovering novel catabolic metabolites from a parent biocompound was developed and validated on the metabolism of γ-tocopherol in human A549 cell. The method is based on LC–MS analysis of in vitro stable isotope-labeled metabolites and assumes that a parent compound and its metabolites share a common functional group that can be derivatized by well-documented reagents. In this method, two equal aliquots of extracted metabolites are separately derivatized with isotope-coded (heavy) and non-isotope-coded (light) form of derivatizing reagent, mixed at 1:1 ratio and analyzed using LC–MS. The metabolites with common functional group are then easily recognized by determination of a chromatographically co-eluted pair of isotopomers (MS doublet peaks) with similar peak intensities and mass difference corresponding to the mass difference between heavy and light form of derivatization reagent. The feasibility of this approach was demonstrated and validated by the identification of products of γ-tocopherol catabolism in human A549 cell culture media using N-methyl-nicotinic acid N-hydroxysuccinimide ester (C1-NANHS) and N-methyl-d3-nicotinic acid N-hydroxysuccinimide ester (C1-d3-NANHS) derivatizing reagent. Overall four γ-tocopherol metabolites were identified including 9′-COOH, 11′-COOH, 13′-COOH and 13′-OH. In addition, the developed LC–MS method can also be used for the fast and sensitive quantitative analysis of γ-tocopherol and other forms of vitamin E related compounds.  相似文献   

3.
Benazepril, an anti-hypertensive drug, was subjected to forced degradation studies. The drug was unstable under hydrolytic conditions, yielding benazeprilat, which is a known major degradation product (DP) and an active metabolite. It also underwent photochemical degradation in acid and neutral pH conditions, resulting in multiple minor DPs. The products were separated on a reversed phase (C18) column in a gradient mode, and subjected to LC–MS and LC–NMR studies. Initially, comprehensive mass fragmentation pathway of the drug was established through support of high resolution mass spectrometric (HR-MS) and multi stage tandem mass spectrometric (MSn) data. The DPs were also subjected to LC–MS/TOF studies to obtain their accurate masses. Along with, on-line H/D exchange data were obtained to ascertain the number of exchangeable hydrogens in each molecule. LC–1H NMR and LC–2DNMR data were additionally acquired in a fraction loop mode. The whole information was successfully employed for the characterization of all the DPs. A complete degradation pathway of the drug was also established.  相似文献   

4.
A matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method was developed for the high throughput and robust qualitative profiling of alkaloids in Fuzi—the processed lateral roots of the Chinese herbal medicine Aconitum carmichaeli Debx (A. carmichaeli). After optimization, powdered roots – without any further sample preparation – could be used to screen for the presence of Aconitum alkaloids. Furthermore, the semi-quantitative potential of MALDI-MS was confirmed using liquid chromatography–mass spectrometry (LC–MS) as reference. In total over sixty alkaloids were detected by LC–MS and fifteen of them were tentatively identified. Both MALDI-MS and LC–MS analysis revealed significant variation in alkaloid content in different (commercial) samples. LC–MS analysis of three toxic alkaloids in 14 batches of Fuzi resulted in a variation of their concentrations expressed as RSDs of 138%, 99% and 221% for aconitine, hypaconitine and mesaconitine, respectively. The variation in concentrations (expressed as RSD) of about the ninety constituents detected were classified as follows: 13 constituents showed an RSD of 77–100%, 46 with an RSD of 100–150%, 21 with an RSD of 150–200% and 9 constituents with an RSD in concentration of 200–235%. These results demonstrate a strong difference in chemical composition of the various Fuzi and illustrate the necessity of adequate QA/QC procedures for both safety and efficiency of herbal medicine. The described analytical procedures for alkaloid profiling could play a role in these procedures.  相似文献   

5.
A fast and flexible multi-residue procedure for effective extraction of benzimidazole fungicides and the related transformation products in various raw agricultural commodities is developed for direct and simultaneous analysis by liquid chromatography–tandem mass spectrometry (LC–MS/MS). The new sample preparation method, introduced to allow direct extraction of the labile fungicides as the intact forms in complex matrices, is achieved using a conservative homogenizing extraction and multifunction adsorption cleanup (CHEMAC), which basically involves salting-out partitioning/extraction with acetate-buffered acetonitrile at low-temperature and sequential rapid solid-phase dispersive cleanup with a ternary sorbent mixture. The CHEMAC procedure was optimized and further modified by incorporating several pretreatment variables influencing sample stability and process efficiency, such as pH, temperature, salt and sorbent utilized. By using CHEMAC, a noteworthy improvement in extraction recoveries was obtained for the problematic fungicides, while no significant differential matrix effects were detected on the LC–MS/MS analysis in all 9 matrices. The in-source fragmentation of benomyl occurred but caused no cross-talk interference in multi-component analysis. Thus the CHEMAC-based LC–MS/MS strategy can serve as an attractive approach to satisfactory overall process efficiencies (70–92%) with acceptable repeatability (relative standard deviations below 16%) for all the analyte–matrix combinations. Mean accuracies were obtained within the range of 70–110% at fortified levels of 1–500 ng/g, with intra-day and inter-day variations less than 15 and 20%, respectively. The successful practical application of the proposed method to real samples has also been demonstrated.  相似文献   

6.
To date, the pharmacokinetic research of herbal medicines (HMs) is still in its infancy and is facing critical technical challenges on the qualitative and quantitative analysis of complicated components from biological matrices. Additionally, the lack of authentic standards constitutes another bottleneck on assessing herbal pharmacokinetics. This present work contributes to the development of a powerful technical platform for both qualitative and quantitative pharmacokinetic analysis of herbal components, and a strategy of relative exposure that provides a practicable pharmacokinetic assessment independent of authentic standards, based on the use of liquid chromatography hybrid ion trap time-of-flight mass spectrometry (LC–IT-TOF/MS). Taking schisandra lignans extract (SLE) as an example, the LC–IT-TOF/MS assay was initially applied to the global qualitative analysis of components contained in SLE per se and in the rat plasma post SLE dosing. Afterwards, this study focused on validating the quantitative performance of LC–IT-TOF/MS assay by comparison with a well-established LC–Q/MS assay. For the absolute quantification of five lignans components with authentic standards, both assays showed very similar analytical figures of merit such as linearity, precision, accuracy, and pharmacokinetic parameters. Compared with LC–Q/MS, the prominent advantage of LC–IT-TOF/MS assay is its much higher sensitivity. Moreover, a ‘relative exposure approach’ (REA) that entails the use of sequentially diluted original herbal preparations to prepare the ‘mixed calibration curves’ was developed to assessing herbal pharmacokinetics independent of specific authentic compounds for each component. Such an approach was found capable of providing virtually identical pharmacokinetic parameters as that from the typical pharmacokinetic assay calibrated by authentic standards, except for the absolute plasma concentrations. The presently developed methodology and approach will find its wide use in, but not limited to, the qualitative and quantitative pharmacokinetic analysis of herbal medicines.  相似文献   

7.
This work describes a liquid chromatography–tandem mass spectrometry (LC–MS/MS) procedure for multiplex screening, ultratrace quantification and reliable confirmation of barbital series residues in animal-derived food matrices. The method is developed based on a distinct dependency of the electrospray ionization (ESI) response of nine structural homologues on LC eluent properties and gas-phase ion chemistry during the ESI process. The “wrong-way-round” negative ionization aspect has been explored to optimize the compatibility of the hyphenated LC–MS/MS technique, which facilitates detection limits at 30–100-fold lower than 0.01 ppm without derivatization or post-column basification step. A mobile phase using methanol modified with 0.01% acetic acid is adopted to achieve an approximately 2–9-fold increase in signal-to-noise ratio over the results under suboptimal conditions. There is no significant differential matrix effects or deuterium isotope effects on chromatographic retention and ESI responsiveness at all levels across the different analyte–matrix pairs. Mean recoveries ranged from 79.6% (barbital) to 108% (secobarbital) at fortified levels of 0.5–20 ng/g within relative standard deviations less than 11%. Between-run repeatability and within-laboratory reproducibility were 3–11% and 5–13%, respectively. An ion ratio criterion for valid detection limit data for simultaneous screening of homologous multiresidues in complex sample matrices is proposed. The satisfactory applicability of the newly described procedure to 43 real samples including pork, poultry meat, swine liver, fish tissue and shrimp muscle demonstrated the LC–MS/MS technique with facile sample handling can serve as an attractive alternative analytical method accepted for regulatory purpose.  相似文献   

8.
In the present study, we examined the potential chemopreventive activity of dichloromethane extract of Eurycorymbus cavaleriei by investigating the change of constitutions after incubation with glutathione (GSH). The major constitutions in the dichloromethane extract of E. cavaleriei were cumarin compounds and their cleavage pattern was examined by LC–MS-MS and the characteristic product ions at m/z 206 and 207 were helpful to determine the substitutions of coumarinolignoid compounds. The mechanism of conjugations of 5′-demethylaquillochin and its isomer with GSH was discussed and validated through analysis of the conjugations of reference compound 6-hydroxy-7-methoxycoumarin with GSH by LC–MS-MS and NMR spectrum. The relative ability to induce the detoxification enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1) of nine coumarin compounds was tested which also showed 5′-demethylaquillochin exhibited the most potential chemopreventive ability. These observations suggest that 5′-demethylaquillochin and its isomer from the dichloromethane extract of E. cavaleriei have potential as chemopreventive agents through induction of detoxification enzymes.  相似文献   

9.
A solid-phase extraction (SPE) method for the enrichment and clean-up of lipophilic marine biotoxins from extracts of different species of bivalve molluscs and processed shellfish products was developed. Okadaic acid (OA), pectenotoxin2 (PTX2), azaspiracid1 (AZA1) and yessotoxin (YTX) were determined by LC–MS/MS in hydrolyzed and non-hydrolyzed extracts. Applying a concentration factor of 10 the limit of quantification for the four toxins was determined to be 1 μg/kg. An organized in-house ring trial proved transferability of the method protocol and satisfactory results for all four toxins with a relative standard deviation (RSD) of 5–12%. The precision of the whole method including LC–MS detection was determined by processing seven independent extractions analyzed in independent sequences. RSD ranged between 12% and 24%. This SPE method was tested within a concentration range corresponding to the range of the current European Union regulatory limits (up to 160 μg/kg for the OA group), but it would also be applicable to a lower μg/kg range which is important in view of a possible decrease of regulatory limits as proposed by a working group of the European Food Safety Authority. The potential of SPE as a cleaning tool to cope with matrix effects in LC–MS/MS was studied and compared to liquid–liquid portioning.  相似文献   

10.
Quantitation of trace levels of domoic acid (DA) in seawater samples usually requires labour-intensive protocols involving chemical derivatization with 9-fluorenylmethylchloroformate and liquid chromatography with fluorescence detection (FMOC–LC–FLD). Procedures based on LC–MS have been published, but time-consuming and costly solid-phase extraction pre-concentration steps are required to achieve suitable detection limits. This paper describes an alternative, simple and inexpensive LC method with ultraviolet detection (LC–UVD) for the routine analysis of trace levels of DA in seawater without the use of sample pre-concentration or derivatization steps. Qualitative confirmation of DA identity in dubious samples can be achieved by mass spectrometry (LC–MS) using the same chromatographic conditions. Addition of an ion-pairing/acidifying agent (0.15% trifluoroacetic acid) to sample extracts and the use of a gradient elution permitted the direct analysis of large sample volumes (100 μl), resulting in both high selectivity and sensitivity (limit of detection = 42 pg ml−1 by LC–UVD and 15 pg ml−1 by LC–MS). Same-day precision varied between 0.4 and 5%, depending on the detection method and DA concentration. Mean recoveries of spiked DA in seawater by LC–UVD were 98.8% at 0.1–10 ng ml−1 and 99.8% at 50–1000 ng ml−1. LC–UVD exhibited strong correlation with FMOC–LC–FLD during inter-laboratory analysis of Pseudo-nitzschia multiseries cultures containing 60–2000 ng DA ml−1 (r2 > 0.99), but more variable results were obtained by LC–MS (r2 = 0.85). This new technique was used to confirm the presence of trace DA levels in low-toxicity Pseudo-nitzschia spp. isolates (0.2–1.6 ng ml−1) and in whole-water field samples (0.3–5.8 ng ml−1), even in the absence of detectable Pseudo-nitzschia spp. cells in the water column.  相似文献   

11.
In this study, a comprehensive evaluation of two simple sample treatment methodologies has been carried out for the development of large-scale multi-residue methods for pesticide testing in olive oil. The proposed methodologies are based on (a) liquid–liquid partitioning with acetonitrile followed by dispersive solid-phase extraction clean-up using graphitized carbon black, primary-secondary amine and C18 sorbents; (b) liquid partitioning with acetonitrile saturated with petroleum ether followed by matrix solid-phase dispersion (MSPD) using aminopropyl as sorbent material and a Florisil cartridge for final clean-up in the elution step. To evaluate the proposed sample treatment methodologies, 105 representative multi-class pesticides were studied using fast liquid chromatography–electrospray time-of-flight mass spectrometry (LC–TOFMS). For validation purposes, recoveries studies were carried out at 10 and 100 μg kg−1 levels, yielding recovery rates in the range 70–130% for 72% of analytes using liquid–liquid procedure and for 57% analytes using MSPD procedure. The LC–MS method provided good linearity, precision and accuracy. The limits of detection obtained were lower than 10 μg kg−1 for more than 85% analytes using both sample treatment methodologies. In addition, minor matrix effects (i.e. signal suppression or enhancement ≤20%) were observed in ca. 70% of the studied compounds. Data obtained shows that both sample treatment methodologies proposed can be successfully applied for large-scale pesticide testing in olive oil samples, showing the ability to quickly detect trace amount of over one hundred target species with different physicochemical properties, without requiring expensive instrumentation for sample treatment step and involving relatively low amounts of solvent consumption and waste generation.  相似文献   

12.
An acetonitrile-based extraction method for the analysis of 169 pesticides in soya grain, using liquid chromatography–tandem mass spectrometry (LC–MS/MS) in the positive and negative electrospray ionization (ESI) mode, has been optimized and validated. This method has been compared with our earlier published acetone-based extraction method, as part of a comprehensive study of both extraction methods, in combination with various gas chromatography–(tandem) mass spectrometry [GC–MS(/MS)] and LC–MS/MS techniques, using different detection modes. Linearity of calibration curves, instrument limits of detection (LODs) and matrix effects were evaluated by preparing standards in solvent and in the two soya matrix extracts from acetone and acetonitrile extractions, at seven levels, with six replicate injections per level. Limits of detection were calculated based on practically realized repeatability relative standard deviations (RSDs), rather than based on (extrapolated) signal/noise ratios. Accuracies (as % recoveries), precision (as repeatability of recovery experiments) and method limits of quantification (LOQs) were compared. The acetonitrile method consists of the extraction of a 2-g sample with 20 mL of acetonitrile (containing 1% acetic acid), followed by a partitioning step with magnesium sulphate and a subsequent buffering step with sodium acetate. After mixing an aliquot with methanol, the extract can be injected directly into the LC–MS/MS system, without any cleanup. Cleanup hardly improved selectivity and appeared to have minor changes of the matrix effect, as was earlier noticed for the acetone method. Good linearity of the calibration curves was obtained over the range from 0.1 or 0.25 to 10 ng mL−1, with r2 ≥ 0.99. Instrument LOD values generally varied from 0.1 to 0.25 ng mL−1, for both methods. Matrix effects were not significant or negligible for nearly all pesticides. Recoveries were in the range 70–120%, with RSD ≤ 20%. If not, they were still mostly in the 50–70% range, with good precision (RSD ≤ 20%). The method LOQ values were most often 10 μg kg−1 for almost all pesticides, with good repeatability RSDs. Apart from some minor pros and cons, both compared methods are fast, efficient and robust, with good method performances. The two methods were applied successfully in a routine analysis environment, during surveys in 2007 and 2008.  相似文献   

13.
Lactic acidemia is commonly associated with severe diseases in pediatric patients. Quantitation of blood lactate and pyruvate is important for the diagnosis and clinical management. A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method using dried blood spots (DBS) was developed and could be used for simultaneous quantification of blood lactate and pyruvate. The applicability of the developed method was tested and confirmed by the regression analysis between LC–MS/MS method and enzymatic assay. Lactate and pyruvate were extracted from DBS obtained from 580 full-term, 120 pre-term infants (gestations ranging from 24 to 36 weeks), and 65 patients with suspected lactic acidemia, with methanolic internal standard (IS) solutions of sodium l-lactate-13C3 and pyruvate-13C3. An API-2000 LC–MS/MS system with multiple reaction monitoring (MRM) mode was applied. The within-run and between-run precisions (CV%) were determined and the results were 1.9% and 3.9% for lactate (n = 20) and 5.7% and 7.3% for pyruvate (n = 20). The linearity of lactate (r = 0.9986) and pyruvate (r = 0.9973) based on the IS was excellent. The parameter r squared (r2) of linear regression between LC–MS/MS method and enzymatic assay was 0.9405 for lactate and 0.9447 for pyruvate, respectively, and the agreement between these methods was consistent and acceptable. The stability of lactate and pyruvate on DBS was also confirmed. The LC–MS/MS method we developed is a specific, sensitive, and reproducible method for measuring blood lactate and pyruvate concentrations. The use of DBS in this method makes it particularly attractive for pediatric patients.  相似文献   

14.
The alkaloid ricinine, an insecticide for leaf-cutting ant (Atta sexdens rubropilosa), was obtained from Ricinus communis. A two-phase solvent system composed of CH2Cl2/EtOH/H2O (93:35:72, v/v/v) was used for high-speed counter-current chromatographic (HSCCC) isolation of ricinine in high yield and with over 96% purity, as determined by liquid and gas chromatography–mass spectrometry (LC–MS and GC–MS). Identification of ricinine was performed by comparison of 1H NMR, 13C NMR and LC–MS/MS data.  相似文献   

15.
Isomangiferin was isolated from Cyclopia subternata using a multi-step process including extraction, liquid–liquid partitioning, high-speed counter-current chromatography (HSCCC) and semi-preparative reversed-phase high-performance liquid chromatography (HPLC). Enrichment of phenolic compounds in a methanol extract of C. subternata leaves was conducted using liquid–liquid partitioning with ethyl acetate–methanol–water (1:1:2, v/v). The enriched fraction was further fractionated using HSCCC with a ternary solvent system consisting of tert-butyl methyl ether–n-butanol–acetonitrile–water (3:1:1:5, v/v). Isomangiferin was isolated by semi-preparative reversed-phase HPLC from a fraction containing mostly mangiferin and isomangiferin. The chemical structure of isomangiferin was confirmed by LC–high-resolution electrospray ionization MS, as well as one- and two-dimensional NMR spectroscopy.  相似文献   

16.
A generic and efficient homolog-targeted approach was used to expand screening and detection of target class of sulfonamides and structural analogs, based on a fast single-tube extraction/partitioning-multifunction adsorption cleanup (SEP/MAC) for class-specific fragmentation-dependent acquisition with a liquid chromatography–hybrid triple-quadrupole linear ion trap mass spectrometer (LC–QqLIT). By combining the two-stage process conducted in a single tube as one-pot protocol, the straightforward SEP/MAC procedure was optimized to offer clean extracts with reasonable recovery (71–109% with RSDs < 20%) and decreased matrix interferences (−9 to 19%) of multiresidual sulfonamide extraction from different tissue samples. The novel use of neutral loss scan of 66 Da (NLS) or precursor ion scanning of m/z 108 (PreS) in positive ion mode was found to achieve more comprehensive coverage of protonated molecular ions of a wide array of sulfonamides including N4-acetyl and hydroxylamine metabolites plus their possible dimers. Moreover, the PreS-triggered automatically enhanced product ion spectral acquisition enabled simultaneous screening, profiling and confirmation of an unlimited number of analytes belonging to the sulfonamide class within a single analysis. The validation and application results of the generic SEP/MAC-based LC–QqLIT strategy consistently demonstrated favorable performances with acceptable accuracy (67–116%), precision (RSDs < 25%), and sensitivity (LOQs ≤ 7.5 ng g−1) to meet the acceptance criteria for all the sulfonamide–tissue combinations. Thus, the integration of the matrix-independent SEP/MAC procedure and the multiparameter matching algorithm with the unit-resolution LC–QqLIT instrument can serve as a valuable semi-targeted discovery strategy for rapid screening and reliable quantitative/confirmatory analysis of real samples.  相似文献   

17.
A rapid, specific and sensitive multiresidue method to determine 42 pesticides in made tea, tea infusion and spent leaves has been developed and validated for the routine analysis by liquid chromatography–tandem mass spectrometry (LC–MS/MS). The method was reproducible (Horwitz ratio (HorRat) <0.5 at 50 ng/g) and validated by the analysis of sample spiked at 50 and 100 ng/g in made tea, tea infusion and spent leaves. The samples were extracted with ethyl acetate + cyclohexane (9:1; v/v), and the extracts were cleaned up by dispersive solid phase extraction with primary secondary amine sorbent + graphitized carbon black + Florisil. The recoveries of all the pesticides were between 70% and 120% with a relative standard deviation of less than 15% and correlation coefficient for each pesticide was R2 ≥0.99. The matrix effect on signal of respective compounds was measured by comparing matrix-matched calibration standards with those in solvent-only. The limits of quantitation (LOQ) met the requirements of the maximum residue limits (MRLs) for pesticides in tea as recommended by the European Union.  相似文献   

18.
A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid–liquid extraction (MALLE) and LC–atmospheric pressure photoionisation (APPI)–MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 μL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L−1 (OD-PABA) and 16 ng L−1 (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L−1 (BP-3) and 4381 ng L−1 (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L−1 (OC).  相似文献   

19.
Setting appropriate bin sizes to aggregate hyphenated high-resolution mass spectrometry data, belonging to similar mass over charge (m/z) channels, is vital to metabolite quantification and further identification. In a high-resolution mass spectrometer when mass accuracy (ppm) varies as a function of molecular mass, which usually is the case while reading m/z from low to high values, it becomes a challenge to determine suitable bin sizes satisfying all m/z ranges. Similarly, the chromatographic process within a hyphenated system, like any other controlled processes, introduces some process driven systematic behavior that ultimately distorts the mass chromatogram signal. This is especially seen in liquid chromatogram–mass spectrometry (LC–MS) measurements where the gradient of the solvent and the washing step cycle—part of the chromatographic process, produce a mass chromatogram with a non-uniform baseline along the retention time axis. Hence prior to any automatic signal decomposition techniques like deconvolution, it is a equally vital to perform the baseline correction step for absolute metabolite quantification. This paper will discuss an instrument and process independent solution to the binning and the baseline correction problem discussed above, seen together, as an effective pre-processing step toward liquid chromatography–high resolution-mass spectrometry (LC–HR-MS) data deconvolution.  相似文献   

20.
A sensitive and precise analysis using hollow fiber renewal liquid membrane (HFRLM) extraction followed by high performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) is described for determination of five sulfonamides in honey samples. In this procedure, the organic solvent introduced directly into the sample matrix extracts the sulfonamides and carries them over the polypropylene porous membrane. An organic solvent is immobilized inside the polypropylene porous membrane, leading to a homogeneous phase. The stripping phase at higher pH in the lumen of the membrane promotes the ionization of the target compounds releasing them to this phase. The most important parameters affecting the extraction efficiency were optimized by multivariable designs (pH and sample mass, pH and buffer for stripping phase, extraction temperature and time, type and volume of extractor solvent and use of salt to saturate the sample). Detection limits in the range of 5.1–27.4 μg kg−1 and linearity coefficient of correlation higher than 0.987 were obtained for the target analytes. The results obtained for the proposed method show that HFRLM–LC–MS/MS can be used for determination of the five sulfonamides studied in honey samples with excellent precision, accuracy, practicality and short analysis time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号