首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three polysaccharide-based chiral stationary phases, Sepapak® 1, Sepapak® 2 and Sepapak® 3 have been evaluated in the present work for the stereoisomer separation of a group of 12 flavonoids including flavanones (flavanone, 4′-methoxyflavanone, 6-methoxyflavanone, 7-methoxyflavanone, 2′-hydroxyflavanone, 4′-hydroxyflavanone, 6-hydroxyflavanone, 7-hydroxyflavanone, hesperetin, naringenin) and flavanone glycosides (hesperidin, naringin) by nano-liquid chromatography (nano-LC). The behaviour of these chiral stationary phases (CSPs) towards the selected compounds was studied in capillary columns (100 μm internal diameter (i.d.)) packed with the above mentioned CSPs using polar organic, reversed and normal elution modes. The influence of nature and composition of the mobile phase in terms of concentration and type of organic modifier, buffer type and water content (reversed phase elution mode) on the enantioresolution (Rs), retention factor (k) and enantioselectivity (α) was evaluated. Sepapak® 3 showed the best chromatographic results in terms of enantioresolution, enantioselectivity and short analysis time, employing a polar organic phase mode. A mixture of methanol/isopropanol (20/80, v/v) as mobile phase enabled the chiral separation of eight flavanones with enantioresolution factor (Rs) in the range 1.15–4.18. The same analytes were also resolved employing reversed and normal phase modes with mixtures of methanol/water and hexane/ethanol at different ratios as mobile phases, respectively. Loss in resolution for some compounds, broaden peaks and longer analysis times were observed with these last two chromatographic elution modes.  相似文献   

2.
The current popularity of capillary electrochromatography (CEC) has led to an increasing number of studies on the development and evaluation of enantioselective CEC systems. These studies clearly demonstrate that the most prominent advantage of electrically driven separation methods, the vastly increased column efficiency as compared to pressure-driven chromatography, can also be experimentally achieved for the separations of enantiomers. In analogy to high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE), several approaches have been used. The addition of a chiral selector to the mobile phase is the simplest method. Less erroneous and more elegant approaches are those that use open-tubular, conventional packed, and monolithic columns containing chiral stationary phases that stereoselectively interact with enantiomers. This review evaluates the new techniques and compares them to enantioselective HPLC and CE. Further, it describes the various concepts of enantioselective CEC and focuses on the current ‘state-of-the-art' column technology.  相似文献   

3.
In this work, a novel polysaccharide‐based chiral stationary phase, cellulose tris(4‐chloro‐3‐methylphenylcarbamate), also called Sepapak 4 has been evaluated for the chiral separation of amlodipine (AML) and its two impurities. AML is a powerful vasodilatator drug used for the treatment of hypertension. Capillary columns of 100 μm id packed with the chiral stationary phase were used for both nano‐LC and CEC experiments. The optimization of the mobile phase composed of ACN/water, (90:10, v/v) containing 15 mM ammonium borate pH 10.0 in nano‐LC allowed the chiral separation of AML and the two impurities, but not in a single run. With the purpose to obtain the separation of the three pairs of enantiomers simultaneously, CEC analyses were performed in the same conditions achieving better enantioresolution and higher separation efficiencies for each compound. To fully resolve the mixture of six enantiomers, parameters such as buffer pH and concentration sample injection have been then investigated. A mixture of ACN/water (90:10, v/v) containing 5 mM ammonium borate buffer pH 9.0 enabled the complete separation of the three couples of enantiomers in less than 30 min. The optimized CEC method was therefore validated and applied to the analysis of pharmaceutical formulation declared to contain only AML racemate.  相似文献   

4.
A mixture of unsaturated fatty acid methyl esters was separated with a new splitless capillary set-up. With the employed apparatus configuration different capillary separation techniques such as capillary high-performance liquid chromatography (cHPLC), capillary electrochromatography (CEC) and pressurized capillary electrochromatography (pCEC) could be applied. The detection and identification of the sample compounds were accomplished by hyphenating these capillary separation techniques with nuclear magnetic resonance (NMR) spectroscopy using a novel configuration of the detection capillary set-up. Using modified electrokinetically driven separation techniques, the electric field was applied solely across the separation column. With this improved interface for capillary liquid chromatography-NMR on-line coupling, the stereochemical assignment of the cis and trans configuration of unsaturated fatty acids could be easily accomplished. Finally, the results of cHPLC-NMR, CEC-NMR and pCEC-NMR coupling experiments were compared.Dedicated to Professor Günter Häfelinger on the occasion of his 65th birthday  相似文献   

5.
A comprehensive study into the effects of mobile phase composition and column temperature on enantiomer elution order was conducted with a set of chiral rod-like liquid crystalline materials. The analytes were structurally similar and comprised variances such as length of terminal alkyl chain, presence of chlorine, number of phenyl rings, and type of chiral center. Experiments were carried out in polar organic and reversed-phase modes using amylose tris(3-chloro-5-methylphenylcarbamate) immobilized on silica gel as the chiral stationary phase. For all liquid crystals, reversal of elution order of enantiomers was observed based on type of used cosolvent and/or its content in the mobile phase; for some of the liquid crystals a temperature-induced reversal was also observed. Both linear and nonlinear dependencies of natural logarithm of enantioselectivity on temperature were found. Tested mobile phases comprised pure organic solvents and binary and tertiary mixtures of acetonitrile with organic solvents and/or water. Effect of acidic/basic mobile phase additives was also tested. Effect of structure of chiral selector is briefly discussed.  相似文献   

6.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

7.
Summary The capillary electrochromatographic (CEC) separation of a range of pharmaceutical bases was investigated on a commercially available silica stationary phase using aqueous mobile phases. The effects of mobile phase composition, buffer pH, applied voltage, and buffer anion on the retention behaviour of these bases were studied. Promising chromatography was obtained at pH 7.8 but was later found to be irreproducible. However, successful and reproducible chromatography of the bases was achieved at pH 2.3. We have previously demonstrated that the addition of mobile phase additives such as TEA-phosphate at low pH values has resulted in excellent CEC analysis of bases on reversed-phase packing materials. The same approach was applied to the analysis of bases on the silica phase in order to improve peak shape. Excellent chromatography was obtained for the analysis of strong pharmaceutical bases such as benzylamine, nortriptyline and diphenhydramine. The experimental investigations have shown that the CEC separation of a range of pharmaceutical bases can routinely be achieved with excellent peak shapes and peak efficiencies as high as 320,000 plates m−1.  相似文献   

8.
In completion of an earlier defined generic chiral screening approach, a generic separation strategy for basic, bifunctional, and neutral compounds was proposed and evaluated. This strategy adds to a previously defined strategy for acidic compounds. The screening experiment of the actual strategy used a mobile phase of 5 mM phosphate buffer pH 11.5/ACN (30/70 v/v), a temperature of 25 degrees C, and a voltage of 15 kV. The selected chiral stationary phases were Chiralpak AD-RH, Chiralcel OD-RH, Chiralcel OJ-RH, and Chiralpak AS-RH, all based on polysaccharide selectors. It was seen that 31 out of 48 test compounds were partially or baseline-resolved under screening conditions. After execution of the optimization steps of the strategy, this number increased to 41, with a total of 21 baseline-separated compounds. Combined with the results obtained from the acidic test set examined in the earlier defined strategy, of all tested compounds 82.5% showed enantioselectivity and 49.2% could be baseline-separated.  相似文献   

9.
The separation of chiral compounds is an interesting and important topic of research because these compounds are involved in some biological processes, fundamentally in human health. Among the various application fields where enantiomers are remarkable, drug analysis has to be considered. Most of the drugs contain enantiomers and very often one of the two isomers could be pharmacologically more active or even dangerous. Therefore, the separation of these compounds is very important. Among the different analytical techniques usually employed, capillary electrochromatography has demonstrated great capability in enantiomers resolution. The great potential of this electromigration technique stands mainly in its high efficiency due to the use of an electrosmotic flow (flat flow profile) and on the high selectivity because of the use of a stationary phase. Chiral separation can be obtained utilizing several chiral stationary phases including a polysaccharide derivative. The aim of this review paper is to summarize the main features of capillary electrochromatography and polysaccharide derivatives of chiral stationary phase. It also report examples of practical applications utilizing this approach.  相似文献   

10.
Summary Seven aromatic and alkyl amylose and cellulose carbamates have been tested as chiral stationary phases in gas chromatography. One of them, amylose tris(n-butylcarbamate) can be used for enantiomer separation.  相似文献   

11.
田耘  曹小敏  张琪  曾昭睿 《色谱》2009,27(6):737-744
超分子化学是一门研究分子间特定识别能力的新兴学科,超分子化合物所具有的主-客体识别能力为高选择性的色谱分离提供了广阔的发展前景。毛细管电色谱是近年来发展起来的一种高效、高选择性的微分离技术,电色谱固定相是该技术的核心部分,一直是研究的热点。本文综述了1998年以来环糊精、杯芳烃、冠醚以及大环多胺等4种超分子化合物用作毛细管电色谱固定相的研究进展情况。  相似文献   

12.
The need for novel packing materials in both capillary electrochromatography (CEC) and capillary liquid chromatography (CLC) is apparent and the development towards more selective, application-oriented chromatographic phases is under progress world-wide. In this study we have synthesized new polyethyleneimine (PEI) functionalized Mn(2)O(3), SiO(2), SnO(2), and ZrO(2) particles for the fabrication of packed capillary columns for CEC and CLC. The nanocasting approach was successful for the preparation of functionalized metal oxide materials with a controlled porosity and morphology. PEI functionalization was done using ethyleneimine monomers to create particles which are positively charged in aqueous solution below pH 9. This functionalization allowed the possibility to have both hydrophobic (due to its alkyl chain) and ionic interactions (due to positively charged amino groups) with selected compounds. For comparison aminopropyl-functionalized silica was also synthesized and tested. Both slurry pressure and electrokinetic packing procedures used gave similar results, but fast sedimentation of the material caused some problems during the packing. The high stability and wide pH range of PEI-functionalized SiO(2) material, with potential for hydrophobic and electrostatic interactions, proved to be useful for the CEC and CLC separation of some model acidic and neutral compounds.  相似文献   

13.
In order to assess the true impact of each single enantiomer of pharmacologically active compounds (PACs) in the environment, highly efficient, fast and sensitive analytical methods are needed. For the first time this paper focuses on the use of ultrahigh performance supercritical fluid based chromatography coupled to a triple quadrupole mass spectrometer to develop multi-residue enantioselective methods for chiral PACs in environmental matrices. This technique exploits the advantages of supercritical fluid chromatography, ultrahigh performance liquid chromatography and mass spectrometry. Two coated modified 2.5 μm-polysaccharide-based chiral stationary phases were investigated: an amylose tris-3,5-dimethylphenylcarbamate column and a cellulose tris-3-chloro-4-methylphenylcarbamate column. The effect of different chromatographic variables on chiral recognition is highlighted. This novel approach resulted in the baseline resolution of 13 enantiomers PACs (aminorex, carprofen, chloramphenicol, 3-N-dechloroethylifosfamide, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, imazalil, naproxen, ofloxacin, omeprazole, praziquantel and tetramisole) and partial resolution of 2 enantiomers PACs (ibuprofen and indoprofen) under fast-gradient conditions (<10 min analysis time).  相似文献   

14.
In this study, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, or lauryl-methacrylate), were developed as separation columns of benzophenone compounds for capillary electrochromatography (CEC). In addition to the presence of plenty of benzene moieties, the stationary phases contained long and flexible alkyl groups on the surface. With an increase in the molecular length of alkyl methacrylate, the polymeric monolith, which had higher hydrophobicity, effectively reduced the peak tailing of benzophenones, but a weaker retention was observed. The unusual phenomenon was likely due to the π–π interaction between the aromatic compound and the polymeric material. The usage of longer alkyl methacrylate as reaction monomer limited the retention of aromatic compounds on the stationary phase surface, thus the π–π interaction between them was possibly reduced. Consequently, the retention time of aromatic compounds was markedly decreased with an increase in carbon length of alkyl methacrylate that was carried on the polymeric monolith. Compared to previous reports on polystyrene-based columns in which the peak-tailing problem was reduced by decreasing the benzene moieties on the stationary phase, this study demonstrated that the undesirable retention (peak-tailing) could also be improved by the inclusion of long alkyl methacrylate to the polystyrene-based columns.  相似文献   

15.
In this paper we studied the potentiality of nano-liquid chromatography (nano-LC) for the enantiomeric resolution of both basic and acidic compounds of pharmaceutical interest using a vancomycin modified silica stationary phase. Experiments were carried out in a fused silica capillary of 75 microm I.D. packed with chiral modified silica particles of 5 microm diameter, the detection, was done on-line at 195 nm. Enantiomeric resolution of alprenolol, atenolol, metoprolol, oxprenolol, pindolol, propranolol (basic compounds) and some acidic analytes, namely 2-[(5'-benzoyl-2'-hydroxy)phenyl]propionic acid (DF1738Y), 2-[(4'-benzoyloxy-2'-hydroxy)phenyl]propionic acid (DF1770Y), ketoprofen, indoprofen and suprofen was studied by nano-LC utilizing mobile phases containing methanol-acetonitrile-ammonium formate or acetate. The effect of mobile phase composition (buffer type and concentration, organic modifier type and concentration) on chiral resolution (Rs), retention factor (k) and retention time (tR) was also investigated. Good enantiomeric resolution was achieved for basic compounds utilizing the mobile phase containing 90% (MeCN-MeOH)/5% water/5% of 100 mM ammonium acetate pH 4.5. Acidic compounds such as DF1738Y and DF1770Y were better resolved at lower pH 3.5 while ketoprofen, indoprofen and suprofen exhibited the highest resolution at pH 4.5; in this case the mobile phase contained MeOH or MeCN (90%), 5% buffer and 5% of water. The nano-LC method was validated using R-(+)-propranolol as an internal standard finding good repeatability, detection limit, correlation coefficient and recovery and applied to the assay of a pharmaceutical formulation containing a racemic mixture of metoprolol.  相似文献   

16.
2’-(4-Pyridyl)- and 2’-(4-hydroxyphenyl)-TCIBPs (TCIBP = 3,3’,5,5’-tetrachloro-2-iodo-4,4’-bipyridyl) are chiral compounds that showed interesting inhibition activity against transthyretin fibrillation in vitro. We became interested in their enantioseparation since we noticed that the M-stereoisomer is more effective than the P-enantiomer. Based thereon, we recently reported the enantioseparation of 2’-substituted TCIBP derivatives with amylose-based chiral columns. Following this study, herein we describe the comparative enantioseparation of both 2’-(4-pyridyl)- and 2’-(4-hydroxyphenyl)-TCIBPs on four cellulose phenylcarbamate-based chiral columns aiming to explore the effect of the polymer backbone, as well as the nature and position of substituents on the side groups on the enantioseparability of these compounds. In the frame of this project, the impact of subtle variations of analyte and polysaccharide structures, and mobile phase (MP) polarity on retention and selectivity was evaluated. The effect of temperature on retention and selectivity was also considered, and overall thermodynamic parameters associated with the analyte adsorption onto the CSP surface were derived from van ’t Hoff plots. Interesting cases of enantiomer elution order (EEO) reversal were observed. In particular, the EEO was shown to be dependent on polysaccharide backbone, the elution sequence of the two analytes being P-M and M-P on cellulose and amylose tris(3,5-dimethylphenylcarbamate), respectively. In this regard, a theoretical investigation based on molecular dynamics (MD) simulations was performed by using amylose and cellulose tris(3,5-dimethylphenylcarbamate) nonamers as virtual models of the polysaccharide-based selectors. This exploration at the molecular level shed light on the origin of the enantiodiscrimination processes.  相似文献   

17.
The potential of the widely used chiral stationary phase for high-performance liquid chromatography (HPLC) enantioseparations, cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC, sold under the trade name Chiralcel OD) was evaluated under the conditions of nonaqueous capillary electrochromatography (CEC). The effect of the particle size of the silica gel, the loading of CDMPC on the silica gel and nature of the organic solvent, as well as electrolyte salts on the separation characteristics were investigated. This study illustrates the applicability of CDMPC for obtaining highly efficient enantioseparations under the conditions of nonaqueous CEC. Comparative study of enantioseparations in capillary liquid chromatography (CLC) and CEC indicated the significant advantages of CEC such as higher plate number at the similar linear flow rates of the mobile phase as well as better tolerance of higher linear flow rates.  相似文献   

18.
A simple approach to fabricate hybrid monolithic column within the confines of fused-silica capillaries (75 μm i.d.) was introduced. A polyhedral oligomeric silsesquioxanes (POSS) reagent containing a methacrylate group was selected as functional monomer, and copolymerized with bisphenol A dimethacrylate (BPADMA) or ethylene dimethacrylate (EDMA) in the presence of porogenic solvents via thermally initiated free radical polymerization. After optimization of the preparation conditions, two POSS-containing hybrid monoliths were successfully prepared and exhibited good permeability and stability. By comparison of the separation efficiencies of the resulting poly(POSS-co-BPADMA) and poly(POSS-co-EDMA) monoliths in capillary electrochromatography (CEC) and capillary liquid chromatography (cLC), it was indicated the former has better column efficiencies for alkylbenzenes, phenols, anilines and PAHs in CEC and cLC than the latter. Particularly, the hybrid poly(POSS-co-BPADMA) monolith is more suitable for separation of PAHs due to π–π interaction between the analytes and aromatic rings in the surface of monolithic stationary phase.  相似文献   

19.
赵震震  瞿其曙  张欣欣  谷雪  王彦  阎超 《色谱》2009,27(4):431-435
制备了用于色谱的微米纯金颗粒并键合上十八烷基(C18)官能团;对其进行了扫描电镜、红外光谱、元素分析、氮气吸附分析等表征。测得衍生的金颗粒的粒径、孔径以及比表面积分别为3.5 μm、5.0 nm、49.0 m2/g;红外光谱表明C18官能团已键合在金颗粒表面上;衍生后的金颗粒的含碳量为0.56%。通过电填充法得到长度为36 cm(固定相填充长度为19 cm)、内径为100 μm的毛细管色谱柱。利用极端pH的流动相(80%甲醇,pH 1.0以及pH 12.0)冲洗该色谱柱140 h,比较冲洗前后分析物的保留因子,以考察色谱柱的耐酸耐碱性能。结果表明,冲洗前后分析物的保留因子没有明显的变化,说明该色谱柱有良好的耐酸耐碱性。在毛细管液相色谱模式下,用该柱分离尿嘧啶、苯、萘、2-甲基萘、苊以评价色谱柱的一般性能;在碱性条件下分离咖啡因、茶碱、洛贝林以测定色谱柱分离碱性物质的能力。其分离结果表明,该色谱柱的柱效超过了50000理论塔板/m,且色谱峰形较好。在毛细管加压电色谱模式下,施加+5 kV和~5 kV的电压均可以使苯甲酸和苯胺分离,但电场方向不同时,二者的出峰顺序不同。  相似文献   

20.
Retention factors in capillary electrochromatography (CEC) were calculated by means of theoretically derived equations and experimentally determined parameters in microcolumn liquid chromatography and capillary zone electrophoresis. It was found that the retention factor of uncharged components in CEC was about 20% higher than was calculated. The derived equations do not take into account alteration of the nature of the stationary phase or distribution constant by the applied electric field. However, the influence of the electric field on the retention in CEC can be estimated. Individual field contributions could not be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号