首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two cationic gemini surfactants with pyrrolidinium or alkyl ammonium head groups with but-2-yne spacers, but with the same length hydrocarbon chain have been characterized with respect to their aggregation behaviors and separation power as pseudostationary phases (PSPs) for micellar electrokinetic chromatography (MEKC). They were compared with a commonly used PSP, sodium dodecylsulfate (SDS). The results suggest that the head groups of the surfactants have some effect on physicochemical properties such as critical micelle concentration (CMC), C20, γCMC, partial specific volume, methylene selectivity and mobilities of the surfactants. CMC values of G1, G2 and SDS in pure water were found to be 0.82, 0.71, and 8.08 mM, respectively; they were reduced to 0.21, 0.11, and 3.0 mM when measured in 10 mM phosphate buffer at pH 7.0. G1 (αCH2=2.74αCH2=2.74) and G2 (αCH2=2.48αCH2=2.48) provided the most and the least hydrophobic environment, respectively. According to their partial specific volumes, geminis were found to have more flexible structures as compared with sodium dodecylsulfate. The effects of the head group structure were also characterized with the linear solvation energy relationship (LSER) model, which was able to evaluate the role of solute size, polarity/polarizability, and hydrogen bonding on retention and selectivity. The cohesiveness, hydrogen bond acidic and basic character of the surfactant systems were found to have the most significant influence on selectivity and MEKC retention of the gemini surfactants. It should be noted that with their large positive coefficient a values, G1 and G2 were found to be stronger HB acceptors than anionic and most of the cationic surfactants studied in the literature.  相似文献   

2.
Akbay C  Gill NL  Agbaria RA  Warner IM 《Electrophoresis》2003,24(24):4209-4220
An achiral monomeric surfactant (sodium 10-undecenyl sulfate, SUS) and a chiral surfactant (sodium 10-undecenoyl L-leucinate, SUL) were synthesized and polymerized individually to form poly-SUS and poly-SUL. These surfactants were then copolymerized at various molar ratios to produce a variety of copolymerized surfactants (CoPSs), possessing both achiral (sulfate) and chiral (leucinate) head groups. The CoPSs, poly-SUS, poly-SUL, and sodium dodecyl sulfate were characterized using several analytical techniques. The aggregation numbers of the polymeric surfactants and the partial specific volumes were determined by the use of fluorescence quenching and density measurements, respectively. These polymeric surfactants were investigated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC) for the separation of chiral and achiral solutes. Solute hydrophobicity was found to have major influence on the MEKC retention of alkyl phenyl ketones. In contrast, hydrogen-bonding ability of benzodiazepines is the major factor that governs their retention, but hydrophobicity has an insignificant effect on MEKC retention of benzodiazepines.  相似文献   

3.
Sodium di(undecenyl) tartarate monomer (SDUT), a vesicle-forming amphiphilic compound possessing two hydrophilic carboxylate headgroups and two hydrophobic undecenyl chains, was prepared and polymerized to form a polymeric vesicle (i.e., poly-SDUT). The anionic surfactants of SDUT and poly-SDUT (carboxylate head group) and sodium dodecyl sulfate, SDS (sulfate head groups) as well as mixed surfactant systems (SDS/SDUT, SDS/poly-SDUT, and SDUT/poly-SDUT) were applied as pseudostationary phases in micellar electrokinetic chromatography (MEKC). Two linear solvation energy relationship (LSER) models, i.e., solvatochromic and solvation parameter models, were successfully applied to investigate the effect of the type and composition of pseudostationary phases on the retention mechanism and selectivity in MEKC. The solvatochromic and solvation parameter models were used to help understand the fundamental nature of the solute-pseudostationary phase interactions and to characterize the properties of the pseudostationary phases (e.g., solute size and hydrogen bond-accepting ability for all pseudostationary phases). The solute types were found to have a significant effect on the LSER system coefficients and on the predicted retention factors. Although both LSER models provide the same information, the solvation parameter model is found to provide much better results both statistically and chemically than the solvatochromic model.  相似文献   

4.
Akbay C  Shamsi SA 《Electrophoresis》2004,25(4-5):622-634
The influence of surfactant hydrocarbon tail on the solute/pseudostationary phase interactions was examined. Four anionic sulfated surfactants with 8-, 9-, 10-, and 11-carbon chains having a polymerizable double bond at the end of the hydrocarbon chain were synthesized and characterized before and after polymerization. The critical micelle concentration (CMC), polarity, and aggregation number of the four sodium alkenyl sulfate (SAIS) surfactants were determined using fluorescence spectroscopy. The partial specific volume of the polymeric SAIS (poly-SAIS) surfactants was estimated by density measurements and capillary electrophoresis (CE) was employed for determination of methylene selectivity as well as for elution window. The CMC of the monomers of SAIS surfactants decrease with increase in chain length and correlated well when fluorescence method was compared to CE. The physicochemical properties (partial specific volume, methylene selectivity, electrophoretic mobility, and elution window) increased with an increase in chain length. However, no direct relationship was found between the aggregation number and the length of hydrophobic tail of poly-SAIS surfactants. These polymeric surfactants were then used as pseudostationary phases in micellar electrokinetic chromatography (MEKC) to study the retention behavior and selectivity factor of 36 benzene derivatives with different chemical characteristics. Although variation in chain length of the polymeric surfactants significantly affects the retention of nonhydrogen bonding (NHB) benzene derivatives, these effects were less pronounced for hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) benzene derivatives. Therefore, hydrophobicity of poly-SAIS surfactants was found to be a major driving force for retention of NHB derivatives. However, for several benzene derivatives (NHB, HBA, and HBD) significantly higher selectivity factor was observed with longest chain polymeric surfactant (e.g., poly(sodium 10-undecenyl sulfate), poly-SUS) compared to shorter chain polymeric surfactant (e.g., poly(sodium 7-octenyl sulfate), poly-SOcS). In addition, the effect of the surfactant hydrophobic chain was also found to have some impact on migration order of NHB, HBA, and HBD benzene derivatives.  相似文献   

5.
The interactions of triblock copolymers (TBP) with ionic surfactants were studied employing surface tensiometry, electrical conductivity, steady-state fluorescence (SSF), and dynamic light scattering (DLS) techniques. An increasing trend in the critical micelle concentration (CMC) of SDS/CTAB in the presence of triblock copolymers was observed especially at higher polymer to surfactant ratio. The delay in the CMC of surfactants was more pronounced in the presence of E48B10E48 possibly due to its less hydrophobic nature. The negative values of free energy of micellization (ΔGm) both in case of SDS and CTAB confirmed the spontaneity of the processes. The aggregation number (Nagg) and hydrodynamic radius (Rh) of polymer/surfactant mixed systems were determined by SSF and DLS. The suppression of the surfactant micelle size in the presence of TBP was confirmed by SSF and DLS studies.  相似文献   

6.
Akbay C  Shamsi SA 《Electrophoresis》2004,25(4-5):635-644
The effect of hydrocarbon chain length on chemical selectivity in micellar electrokinetic chromatography (MEKC) was investigated using polymeric sulfated surfactants: poly-(sodium 7-octenyl sulfate), poly(sodium 8-nonenyl sulfate), poly(sodium 9-decenyl sulfate), and poly(sodium 10-undecenyl sulfate). Linear solvation energy relationships (LSERs) and free energy of transfer studies were conducted to predict the selectivity differences between the four polymeric surfactants. The overall nature of the solute/ polymeric micelle interactions was found to be different despite the fact that all polymeric surfactants have the same head group. The polar character and acidic strength of the polymeric surfactant are found to decrease as the hydrocarbon chain length of the surfactant is increased. On the other hand, the polarizability of the polymeric sulfated surfactants increases (upon interacting with solute lone-pair electrons) with increasing hydrocarbon chain length. The LSER results show that the solute size and hydrogen bond accepting ability play the key roles in MEKC retention.  相似文献   

7.
Akbay C  Gill NL  Warner IM 《Electrophoresis》2007,28(11):1752-1761
In this study, polymers of sodium 10-undecenoyl L-leucinate (SUL) and sodium undecenyl sulfate (SUS) as well as their copolymerized molecular micelles (CoPMMs) were applied in MEKC as pseudostationary phases to separate benzodiazepines and alkyl phenyl ketones. SDS, a common pseudostationary phase used in MEKC, was also used for comparison. The van't Hoff relationship was applied to compute the temperature dependence of the MEKC retention factors of the test solutes to estimate the enthalpy, entropy, and the Gibbs free energy. Nonlinear van't Hoff plots were obtained with the majority of benzodiazepines indicating that the thermodynamic parameters were temperature-dependent in all surfactant systems for these solutes. In contrast, all alkyl phenyl ketones resulted in linear van't Hoff plots.  相似文献   

8.
研究了两亲性无规共聚物聚(苯乙烯-co-甲基丙烯酸)(P(St-co-MAA))(单体摩尔比分别为6:4和7:3)自组装胶束的物理化学性质,及其作为假固定相(PSP)的胶束电动色谱性能。测定了聚合物胶束的临界胶束浓度(CMC),对胶束内核微环境的极性、表面电荷密度和流体力学直径等微结构参数进行了表征,对时间窗口、亚甲基选择性等电动色谱参数进行了测定,并与聚(甲基丙烯酸甲酯-co-甲基丙烯酸)(P(MMA-co-MAA))胶束、十二烷基硫酸钠(SDS)胶束体系进行了比较;利用线性溶剂化能关系(LSER)研究了聚合物PSP的选择性差异。结果表明:P(St-co-MAA)体系具有最小的CMC、最宽的时间窗口和最好的亚甲基选择性;LSER表明,疏水作用是决定聚合物PSP选择性的最主要因素,氢键酸度其次,特别是P(St-co-MAA)(单体摩尔比7:3)体系具有最高的作用参数,显示了该PSP具有较高的分离选择性。  相似文献   

9.
10.
A novel catanionic surfactants vesicle system composed of octyltriethylammonium bromide/ sodium dodecyl benzene sulfonate (C8NE3Br/SDBS) has been developed as pseudostationary phase (PSP) in EKC. The C8NE3Br/SDBS system possesses a large vesicle phase region and none of agglomeration phenomena appeared while mixing cationic and anionic surfactants at any molar ratio. Electrophoretic and chromatographic parameters including elution window, hydrophobic selectivity, polar group selectivity, and shape selectivity were characterized using the vesicle at molar ratio of C8NE3Br to SDBS of 3:7 as PSP. Compared with SDS micelles, the vesicle PSP possessed a wider elution window and a better selectivity. The retention behavior and selectivity differences between the novel vesicle and SDS micelles were evaluated through linear solvation energy relationship (LSER) analysis. Though the cohesiveness and the hydrogen bond acidity have greatest influences on the solutes retention and selectivity in both the vesicle and SDS micelle, the vesicle PSP demonstrated a higher hydrophobicity and a lower hydrogen bonding donating capability owing to compact bilayer structure of vesicle. Additionally, the vesicle system had a stronger hydrogen bond accepting capability than SDS micelle. Consequently, according to LSER analysis, the bigger coefficients for v, b, and a revealed the vesicle PSP had a better separation selectivity than conventional SDS micelle.  相似文献   

11.
Sodium di(undecenyl) tartarate monomer (SDUT), a vesicle-forming amphiphilic compound possessing two hydrophilic carboxylate head groups and two hydrophobic undecenyl chains gemini surfactant, was prepared and polymerized to form a polymeric gemini surfactant (i.e., poly-SDUT). These anionic surfactant systems with carboxylate (SDUT and poly-SDUT) and sulfate (sodium dodecyl sulfate, SDS) head groups as well as mixed surfactant systems (SDS/SDUT, SDS/poly-SDUT, and SDUT/poly-SDUT) were then applied as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC). The SDUT and poly-SDUT were characterized using various analytical techniques. Retention factors of 36 benzene derivatives were calculated in 20 mM phosphate buffer of each surfactant system. The retention factor values of the test solutes show that there are distinctive selectivity differences between the surfactant systems. Solute-pseudostationary phase interactions in MEKC were also examined by determining the free energy of transfer of the substituted functional groups from the aqueous buffer phase into the pseudostationary phase.  相似文献   

12.
Micellar-enhanced ultrafiltration (MEUF) was used to remove cadmium ions from wastewater efficiently. In this study the nonionic surfactants polyoxyethyleneglycol dodecyl ether (Brij35) and polyoxyethylene octyl phenyl ether (TritonX-100) were for micellar-enhanced ultrafiltration to lower the dosage of the anionic surfactant sodium dodecyl sulfate (SDS). The surfactant critical micelle concentration (CMC) and the degree of micelle counterion binding were investigated. The effects of nonionic surfactant addition on the efficiency of cadmium removal, the residual quantities of surfactant, the permeate flux and the secondary membrane resistance were investigated. A comparison between MEUF with SDS and MEUF with mixed anionic–nonionic surfactants was undertaken. The results show that the addition of Brij35 or TritonX-100 reduced the CMC of SDS and the degree of counterion binding for the micelles. Due to these variations the Cd2+ rejection efficiency was at a maximum when the Brij35:SDS and the TritonX-100:SDS molar ratio was 0.5. The Cd2+ rejection efficiency in MEUF with SDS is higher than for MEUF with mixed surfactants when the total dose of surfactant is constant. The permeate flux of MEUF with SDS is higher than that for MEUF with mixed surfactants while the secondary resistance of MEUF with SDS is less than that of MEUF with mixed surfactants.  相似文献   

13.
The separation and selectivity of eight aromatic compounds ranging from hydrophilic to hydrophobic properties in micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) micelles or Tween 20-modified mixed micelles were investigated. The effect of different operation conditions such as SDS and Tween 20 modifier surfactant concentration, buffer pH, and applied voltage was studied. The resolution and selectivity of analytes could be markedly affected by changing the SDS micelle concentration or Tween 20 content in the mixed micelles. Applied voltage and pH of running buffers were used mainly to shorten the separation time. Complete separation of eight analytes could be achieved with an appropriate choice of the concentration of SDS micelles or Tween 20-modified mixed micelles. Quicker elution and better precision could be obtained with SDS-Tween 20 mixed micelles than with SDS micelles. The mechanisms that migration order of those analytes was mainly based on their structures and solute-micelle interactions, including hydrophobic, electrostatic, and hydrogen bonding interactions, were discussed.  相似文献   

14.
The present research work is associated with the fluorescence investigations of binary aqueous mixed surfactants solutions of anionic bis-sulfosuccinate gemini surfactant (BSGSMA1,8) and three different conventional surfactants—anionic viz. sodium dodecyl sulfate (SDS), cationic viz. cetyl trimethyl ammonium bromide (CTAB), and nonionic surfactant viz. Triton X 100. Steady-state fluorescence spectroscopy technique has been utilized to examine the micellization behavior of aqueous solution of pure myristyl alcohol-based BSGSMA1,8 having flexible methylene chain [(CH2)8] as spacer group. Critical micelle concentration (CMC), aggregation number (N), and micropolarity of pure and mixed surfactants systems were explored during the investigations. The results revealed the best synergism behavior of prepared gemini BSGSMA1,8 with SDS as compared to CTAB and Triton X 100. The maximum reduction in the value of pyrene intensity ratio (I1/I3) was observed for gemini and SDS mixed surfactant solution. On the other hand, the increased I1/I3 value of mixed gemini with Triton X 100 exhibited that mixed surfactant system of anionic gemini BSGSMA1,8 with non-ionic Triton X 100 is not as compact as other mixed surfactant systems. Aggregation number increased and micropolarity decreased with increased concentration of gemini surfactants.  相似文献   

15.
Pascoe RJ  Foley JP 《Electrophoresis》2003,24(24):4227-4240
The physical, electrophoretic and chromatographic properties (mean diameter, electroosmotic flow, electrophoretic mobility, elution range, efficiency, retention, and hydrophobic, shape, and chemical selectivity) of three surfactant vesicles and one phospholipid vesicle were investigated and compared to a conventional micellar pseudostationary phase comprised of sodium dodecyl sulfate (SDS). Chemical selectivity (solute-pseudostationary phase interactions) was discussed from the perspective of linear solvation energy relationship (LSER) analysis. Two of the surfactant vesicles were formulated from nonstoichiometric aqueous mixtures of oppositely charged, single-tailed surfactants, either cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) in a 3:7 mole ratio or octyltrimethylammonium bromide (OTAB) and SDS in a 7:3 mole ratio. The remaining surfactant vesicle was comprised solely of bis(2-ethylhexyl)sodium sulfosuccinate (AOT) in 10% v/v methanol, and the phospholipid vesicle consisted of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and phosphatidyl serine (PS) in 8:2 mole ratio. The mean diameters of the vesicles were 76.3 nm (AOT), 86.9 nm (CTAB/SOS), 90.1 nm (OTAB/SDS), and 108 nm (POPC/PS). Whereas the coefficient of electroosmotic flow (10(-4) cm2 V(-1) s(-1)) varied considerably (1.72 (OTAB/SDS), 3.77 (CTAB/SOS), 4.05 (AOT), 5.26 (POPC/PS), 5.31 (SDS)), the electrophoretic mobility was fairly consistent (-3.33 to -3.87 x 10(-4) cm2 V(-1) s(-1)), except for the OTAB/SDS vesicles (-1.68). This resulted in elution ranges that were slightly to significantly larger than that observed for SDS (3.12): 3.85 (POPC/PS), 8.6 (CTAB/SOS), 10.1 (AOT), 15.2 (OTAB/SDS). Significant differences were also noted in the efficiency (using propiophenone) and hydrophobic selectivity; the plate counts were lower with the OTAB/SDS and POPC/PS vesicles than the other pseudostationary phases (< or = 75,000/m vs. > 105,000/m), and the methylene selectivity was considerably higher with the CTAB/SOS and OTAB/SDS vesicles compared to the others (ca. 3.10 vs. < or = 2.6). In terms of shape selectivity, only the CTAB/SOS vesicles were able to separate all three positional isomers of nitrotoluene with near-baseline resolution. Finally, through LSER analysis, it was determined that the cohesiveness and hydrogen bond acidity of these pseudostationary phases have the greatest effect on solute retention and selectivity.  相似文献   

16.
Sodium di(2-ethylhexyl) sulfosuccinate (DOSS) and sodium di(2-ethylhexyl) phosphate (NaDEHP) surfactants, with double alkyl chains and negatively charged headgroups, were characterized using fluorescence quenching, densitometry, and tensiometry techniques to determine their aggregation number, partial specific volume, and critical aggregation concentration. These two surfactants were then applied as pseudostationary phases in micellar electrokinetic chromatography (MEKC) for separations of alkyl phenyl ketones. The aggregation number of NaDEHP was found to be more than two-fold higher than that of DOSS. The partial specific volumes of NaDEHP and DOSS were found to be 0.9003 and 0.8371 mL/g, respectively. The critical aggregation concentrations are 5.12 and 1.80 mM for NaDEHP and DOSS, respectively. The DOSS surfactant provided a wider separation window and had a greater hydrophobic environment than the NaDEHP surfactant under the MEKC experimental conditions studied.  相似文献   

17.
C12-s-C12•2Br和C12En混合水溶液的胶团化行为   总被引:3,自引:0,他引:3  
季铵盐二聚表面活性剂C12 s C12•2Br(s=2、3、4、6)和非离子表面活性剂C12E10或C12E23在水溶液中生成混合胶团.其临界胶团总浓度cmcT值介于二元复配体系中各组分的临界胶团浓度和之间.当添加少量非离子型表面活性剂(在水溶液中的摩尔分数α2=0.1)时,混合胶团中C12E10或C12E23的摩尔分数均已超过0.35;随着溶液中非离子型表面活性剂含量的增大,混合胶团中逐渐以C12E10或C12E23成分为主.  相似文献   

18.
Surfactant based enhanced oil recovery (EOR) is an interesting area of research for several petroleum researchers. In the present work, individual and mixed systems of anionic and cationic surfactants consisting of sodium dodecyl sulphate (SDS) and cetyltrimethylammonium bromide (CTAB) in different molar ratios were tested for their synergistic effect on the crude oil-water interfacial tension (IFT) and enhanced oil recovery performance. The combination of these two surfactant systems showed a higher surface activity as compared to individual surfactants. The effect of mixed surfactant systems on the IFT and critical micellar concentration (CMC) is strongly depends on molar ratios of the two surfactant. Much lower CMC values were observed in case of mixed surfactant systems prepared at different molar ratios as compared to individual surfactant systems. The lowest CMC value was found when the molar concentration of SDS was higher than the CTAB. When the individual and mixed surfacant systems were tested for EOR performance through flooding experiments, higher ultimate oil recovery was obtained from mixed surfactant flooding compared to individual surfactants. Combination of SDS and CTAB or probably other anionic-cationic surfactants show synergism with substantial ability to reduce crude oil water IFT and can be a promising EOR method.  相似文献   

19.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

20.
The micellar properties of aqueous binary mixed solutions of sodium glycocholate, NaGC, and octa-oxyethylene glycol mono-n-decyl ether, C10E8, have been studied on the basis of surface tensions, the mean aggregation number and the polarity of the interior of the micelles. The mean aggregation number, measured by steady state quenching method, decreased with the increase of the mole fraction of NaGC in the mixed system. The polarity of the interior, estimated by the ratio of first and third vibronic peak in a monomeric pyrene fluorescence emission spectrum, suggested that the hydrophobicity of intramicelles increased with the increase of the mole fraction of NaGC in the mixed system. These are considered to be caused by the differences in the chemical structure and the hydrophobic nature between NaGC and C10E8. The mean aggregation number and the polarity of the interior for each micelle near the CMC in lower total concentration of surfactants showed the tendency approaching those of pure micelle of the nonionic surfactant. This suggests that the ratio of NaGC in the initial micelles in the range of lower total concentration near the CMC is lower than that of the corresponding prepared mole fraction in the mixed system. This lower value was confirmed also from theoretical calculation of the ratio of NaGC at the CMC in the mixed micelle by regular solution treatment of Rubingh in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号