首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of surface hydrophobicity distribution of proteins on retention in hydrophobic interaction chromatography (HIC) was investigated. Average surface hydrophobicity as well as hydrophobic contact area between protein and matrix were estimated using a classical thermodynamic model. The applicability of the model to predict protein retention in HIC was investigated on ribonucleases with similar average surface hydrophobicity but different surface hydrophobicity distribution. It was shown experimentally that surface hydrophobicity distribution could have an important effect on protein retention in HIC. The parameter "hydrophobic contact area," which comes from the thermodynamic model, was able to represent well the protein retention in HIC with salt gradient elution. Location and size of the hydrophobic patches can therefore have an important effect on protein retention in HIC, and the hydrophobic contact area adequately describes this.  相似文献   

2.
The contributions of protein and adsorbent properties to retention and recovery were examined for hydrophobic interaction chromatography (HIC) using eight commercially available phenyl media and five model proteins (ribonuclease A, lysozyme, alpha-lactalbumin, ovalbumin and BSA). The physical properties of the adsorbents were determined by inverse size exclusion chromatography (ISEC). The adsorbents examined differ from each other in terms of base matrix, ligand density, porosity, mean pore radius, pore size distribution (PSD) and phase ratio, allowing systematic studies to understand how these properties affect protein retention and recovery in HIC media. The proteins differ in such properties as adiabatic compressibility and molecular mass. The retention factors of the proteins in the media were determined by isocratic elution. The results show a very clear trend in that proteins with high adiabatic compressibility (higher flexibility) were more strongly retained. For proteins with similar adiabatic compressibilities, those with higher molecular mass showed stronger retention in Sepharose media, but this trend was not observed in adsorbents with polymethacrylate and polystyrene divinylbenzene base matrices. This observation could be related to protein recovery, which was sensitive to protein flexibility, molecular size, and conformation as well as the ligand densities and base matrices of the adsorbents. Low protein recovery during isocratic elution could affect the interpretation of protein selectivity results in HIC media. The retention data were fitted to a previously published retention model based on the preferential interaction theory, in terms of which retention is driven by release of water molecules and ions upon protein-adsorbent interaction. The calculated number of water molecules released was found to be statistically independent of protein retention strength and adsorbent and protein properties.  相似文献   

3.
Hydrogen exchange has been a useful technique for studying the conformational state of proteins, both in bulk solution and at interfaces, for several decades. Here, we propose a physically based model of simultaneous protein adsorption, unfolding and hydrogen exchange in HIC. An accompanying experimental protocol, utilizing mass spectrometry to quantify deuterium labeling, enables the determination of both the equilibrium partitioning between conformational states and pseudo-first order rate constants for folding and unfolding of adsorbed protein. Unlike chromatographic techniques, which rely on the interpretation of bulk phase behavior, this methodology utilizes the measurement of a molecular property (solvent exposure) and provides insight into the nature of the unfolded conformation in the adsorbed phase. Three model proteins of varying conformational stability, α-chymotrypsinogen A, β-lactoglobulin B, and holo α-lactalbumin, are studied on Sepharose™ HIC resins possessing assorted ligand chemistries and densities. α-Chymotrypsinogen, conformationally the most stable protein in the set, exhibits no change in solvent exposure at all the conditions studied, even when isocratic pulse-response chromatography suggests nearly irreversible adsorption. Apparent unfolding energies of adsorbed β-lactoglobulin B and holo α-lactalbumin range from −4 to 3 kJ/mol and are dependent on resin properties and salt concentration. Characteristic pseudo-first order rate constants for surface-induced unfolding are 0.2–0.9 min−1. While poor protein recovery in HIC is often associated with irreversible unfolding, this study documents that non-eluting behavior can occur when surface unfolding is reversible or does not occur at all. Further, this hydrogen exchange technique can be used to assess the conformation of adsorbed protein under conditions where the protein is non-eluting and chromatographic methods are not applicable.  相似文献   

4.
Conformational transitions of a protein in hydrophobic interaction based chromatography, including hydrophobic interaction chromatography (HIC) and reversed-phase liquid chromatography (RPLC), and their impact on the separation process and performance were probed by molecular dynamics simulation of a 46-bead β-barrel coarse-grained model protein in a confined pore, which represents the porous adsorbent. The transition of the adsorbed protein from the native conformation to an unfolded one occurred as a result of strong hydrophobic interactions with the pore surface, which reduced the formation of protein aggregates. The conformational transition was also displayed in the simulation once an elution buffer characterized by weaker hydrophobicity was introduced to strip protein from pore surface. The discharged proteins that underwent conformational transition were prone to aggregation; thus, an unsatisfactory yield of the native protein was obtained. An orthogonal experiment revealed that in addition to the strengths of the protein–protein and protein–adsorbent hydrophobic interactions, the elution time required to reduce the above-mentioned interactions also determined the yield of native protein by HIC and RPLC. Stepwise elution, characterized by sequential reduction of the hydrophobic interactions between the protein and adsorbent, was presented as a dynamic strategy for tuning conformational transitions to favor the native conformation and reduce the formation of protein aggregates during the elution process. The yield of the native protein obtained by this dynamic operation strategy was higher than that obtained by steady-state elution. The simulation study qualitatively reproduced the experimental observations and provided molecular insight that would be helpful for designing and optimizing HIC and RPLC separation of proteins.  相似文献   

5.
6.
Interaction between proteins and stationary phase in hydrophobic interaction chromatography (HIC) is differentiated into two thermodynamic processes involving direct nonbonding/conformation interac- tion and surface hydrophobic effect of proteins, hence quantitatively giving rise to a binary linear rela- tion between HIC retention time (RT) at concentrated salting liquid and ligand-protein binding free en- ergy. Then, possible binding manners for 27 proteins of known crystal structures with hydrophobic ligands are simulated and analyzed via ICM flexible molecular docking and genetic algorithm, with re- sults greatly consistent with experimental values. By investigation, it is confirmed local hydrophobic effects of proteins and nonbinding/conformation interaction between ligand and protein both notably influence HIC chromatogram retention behaviors, mainly focusing on exposed portions on the protein surface.  相似文献   

7.
Salt-induced protein precipitation and hydrophobic interaction chromatography (HIC) are two widely used methods for protein purification. In this study, salt effects in protein precipitation and HIC were investigated for a broad combination of proteins, salts and HIC resins. Interrelation between the critical thermodynamic salting out parameters in both techniques was equally investigated. Protein precipitation data were obtained by a high-throughput technique employing 96-well microtitre plates and robotic liquid handling technology. For the same protein-salt combinations, isocratic HIC experiments were performed using two or three different commercially available stationary phases-Phenyl Sepharose low sub, Butyl Sepharose and Resource Phenyl. In general, similar salt effects and deviations from the lyotropic series were observed in both separation methods, for example, the reverse Hofmeister effect reported for lysozyme below its isoelectric point and at low salt concentrations. The salting out constant could be expressed in terms of the preferential interaction parameter in protein precipitation, showing that the former is, in effect, the net result of preferential interaction of a protein with water molecules and salt ions in its vicinity. However, no general quantitative interrelation was found between salting out parameters or the number of released water molecules in protein precipitation and HIC. In other words, protein solubility and HIC retention factor could not be quantitatively interrelated, although for some proteins, regular trends were observed across the different resins and salt types.  相似文献   

8.
Protein adsorption, which shows wide prospects in many practical applications such as biosensors, biofuel cells, and biomaterials, has long been identified as a very complex problem in interface science. Here, we present a review on the multiscale modeling and simulation methods of protein adsorption on surfaces with different properties. First, various simulation algorithms (replica exchange, metadynamics, TIGER2A, and PSOVina) and protein models (colloidal, coarse-grained, and all-atom models) are introduced. Then, recent molecular simulation progresses about protein adsorption on different material surfaces (such as charged, hydrophobic, hydrophilic, and responsive surfaces) are retrospected. It has been demonstrated that the adsorption orientation of proteins on charged surfaces and hydrophobic surfaces can be controlled by the electrical dipole and the hydrophobic dipole of proteins, respectively. Superhydrophilic zwitterionic surfaces can resist protein adsorption because of the strong hydration. Under the stimuli of external conditions, the surface properties of materials can be modulated, and thus, the adsorption/desorption of proteins on responsive surfaces can be controlled. Finally, the future directions of molecular simulation study of protein adsorption are discussed.  相似文献   

9.
Hydrophobic charge‐induction chromatography is a new technology for antibody purification. To improve antibody adsorption capacity of hydrophobic charge‐induction resins, new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins with 5‐aminobenzimidazole as a functional ligand were prepared. Adsorption isotherms, kinetics, and dynamic binding behaviors of the poly(glycidyl methacrylate)‐grafted resins prepared were investigated using human immunoglobulin G as a model protein, and the effects of ligand density were discussed. At the moderate ligand density of 330 μmol/g, the saturated adsorption capacity and equilibrium constant reached the maximum of 140 mg/g and 25 mL/mg, respectively, which were both much higher than that of non‐grafted resin with same ligand. In addition, effective pore diffusivity and dynamic binding capacity of human immunoglobulin G onto the poly(glycidyl methacrylate)‐grafted resins also reached the maximum at the moderate ligand density of 330 μmol/g. Dynamic binding capacity at 10% breakthrough was as high as 76.3 mg/g when the linear velocity was 300 cm/h. The results indicated that the suitable polymer grafting combined with the control of ligand density would be a powerful tool to improve protein adsorption of resins, and new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins have a promising potential for antibody purification applications.  相似文献   

10.
The adsorption behavior of proteins in hydrophobic interaction chromatography (HIC) was evaluated by determining the isotherms of a wide range of proteins on various HIC resin systems. Parallel batch experiments were carried out with eleven proteins on three hydrophobic resins with different ligand chemistries and densities. The effects of salt concentration, resin chemistry and protein properties on the isotherms were also examined. The resulting isotherms exhibited unique patterns of adsorption behaviors. For certain protein-resin combinations, a "critical salt behavior" was observed where the amount of protein bound to the resin increased significantly above this salt concentration. Proteins that exhibited this behavior tended to be relatively large with more solvent accessible hydrophobic surface area. Further, calculations indicated that under these conditions the occupied surface area of the adsorbed protein layer could exceed the accessible surface area. The establishment of unique classes of adsorption behavior may shed light on our understanding of the behavior of proteins in HIC systems.  相似文献   

11.
Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.  相似文献   

12.
Summary The nature and effects of bonded phases and analytical conditions on protein retention in high-performance hydrophobic-interaction chromatography (HIC) were investigated. Silica-based packing materials with different surface hydrophobicity were prepared and evaluated with respect to protein retention. The contact of proteins with the hydrophobic stationary phases caused conformational changes of proteins to some extent, but the extent of these changes was dependent on the hydrophobicity of the stationary phases, column temperature and the proteins themselves. Thermal behavior of some proteins in HIC on these phases is also shown.  相似文献   

13.
Chemical modifications of mineral surfaces were performed in order to gain insight into what surface properties are decisive of the accumulation of dental plaque. A non-charged, hydrophilic surface was made by two consecutive plasma polymerizations, firstly with allyl alcohol, secondly with acrylic acid, followed by adsorption of a poly(ethylene glycol)-poly(ethylene imine) adduct. A strongly hydrophobic surface was obtained by plasma polymerization of hexamethyldisiloxane. Ellipsometry was used to monitor protein interaction with the surfaces. The hydrophilic surface gave very little adsorption of both a model protein, IgG, and of saliva proteins. The hydrophobic surface, on the other hand, adsorbed high amounts of both types of proteins. In vitro adhesion of an oral bacterium,S. mutans, as well as in vivo studies, gave the opposite result, the hydrophobic surface giving less adhesion and less plaque accumulation than the hydrophilic surface. A tentative explanation of this behavior is that the saliva proteins that bind to the hydrophobic surface adsorb in an unnatural conformation which does not favor bacteria adherence.  相似文献   

14.
Hydrophobic interaction chromatography (HIC) is an important technique for protein purification, which exploits the separation of proteins based on hydrophobic interactions between the stationary phase ligands and hydrophobic regions on the protein surface. One way of enhancing the purification efficiency by HIC is the addition of short sequences of peptide tags to the target protein by genetic engineering, which could reduce the need for extra and expensive chromatographic steps. In the present work, a methodology for predicting retention times of cutinases tagged with hydrophobic peptides in HIC is presented. Cutinase from Fusarium solani pisi fused to tryptophan-proline (WP) tags, namely (WP)2 and (WP)4, and produced in Saccharomyces cerevisiae strains, were used as model proteins. From the simulations, the methodology based on tagged hydrophobic definition proposed by Simeonidis et al. (Phitagged), associated to a quadratic model for predicting dimensionless retention times, showed small differences (RMSE<0.022) between observed and estimated retention times. The difference between observed and calculated retention times being lower than 2.0% (RMSE<0.022) for the two tagged cutinases at three different stationary phases, except for the case of cut_(wp)2 in octyl sepharose-2 M ammonium sulphate. Therefore, we consider that the proposed strategy, based on tagged surface hydrophobicity, allows prediction of acceptable retention times of cutinases tagged with hydrophobic peptides in HIC.  相似文献   

15.
Hydrophobic interaction chromatography (HIC) exploits the hydrophobic properties of protein surfaces for separation and purification by performing interactions with chromatographic sorbents of hydrophobic nature. In contrast to reversed-phase chromatography, this methodology is less detrimental to the protein and is therefore more commonly used in industrial scale as well as in bench scale when the conformational integrity of the protein is important. Hydrophobic interactions are promoted by salt and thus proteins are retained in presence of a cosmotropic salt. When proteins are injected on HIC columns with increasing salt concentrations under isocratic conditions only, a fraction of the applied amount is eluted. The higher the salt concentration, the lower is the amount of eluted protein. The rest can be desorbed with a buffer of low salt concentration or water. It has been proposed that the stronger retained protein fraction has partially changed the conformation upon adsorption. This has been also corroborated by physicochemical measurements. The retention data of 5 different model proteins and 10 different stationary phases were evaluated. Partial unfolding of proteins upon adsorption on surfaces of HIC media were assumed and a model describing the adsorption of native and partial unfolded fraction was developed. Furthermore, we hypothesize that the surface acts as catalyst for partial unfolding, since the fraction of partial unfolded protein is increasing with length of the alkyl chain.  相似文献   

16.
A novel dual‐retention mechanism mixed‐mode stationary phase based on silica gel functionalized with PEG 400 and succinic anhydride as the ligand was prepared and characterized by infrared spectra and elemental analysis. Because of the ligand containing PEG 400 and carboxyl function groups, it displayed hydrophobic interaction chromatography (HIC) characteristic in a high‐salt‐concentration mobile phase, and weak cation exchange chromatography (WCX) characteristic in a low‐salt‐concentration mobile phase. As a result, it can be employed to separate proteins with both WCX and HIC modes. The resolution and selectivity of the stationary phase was evaluated under both HIC and WCX modes with protein standards, and its performance was comparable to that of conventional ion‐exchange chromatography and HIC columns. The results indicated that the novel dual‐retention mechanism column, in many cases, could replace two individual WCX and HIC columns as a ‘2D column’. In addition, the mixed retention mechanism of proteins on this ‘2D column’ was investigated with stoichiometric displacement theory for retention of solute in liquid chromatography in detail in order to understand why the dual‐retention mechanism column has high resolution and selectivity for protein separation under WCX and HIC modes, respectively. Based on this ‘2D column’, a new 2DLC technology with a single column was developed. It is very important in proteome research and recombinant protein drug production to save column expense and simplify the processes in biotechnology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The effective pore diffusivities, D(e), of five model proteins (ribonuclease A, lysozyme, alpha-lactalbumin, ovalbumin, and BSA) in eight commercial phenyl hydrophobic interaction chromatography (HIC) media were determined by analyzing the plate height data from isocratic elution using the first two moments of the general linear rate model. The adsorbents represent a diverse set of HIC media that are widely used for protein purification. The estimated pore diffusivities were used to calculate the elution profiles of proteins in these adsorbents and were compared with the elution profiles obtained experimentally. High protein loading and sample protein concentration led to the underestimation of the pore diffusivity by the linear rate model. Comparisons between the calculated and the experimental profiles suggest that the pore diffusivities obtained from the linear rate model are generally accurate for proteins with low structural flexibility but not for more flexible ones, presumably because conformational change effects contribute significantly to the overall HETP. The general linear rate model was modified to account for the protein folding/unfolding kinetics, and parameter values could be estimated by fitting the experimental elution profiles to the modified model. In addition to conformational change, adsorbent type also had a significant effect on the accuracies of the pore diffusivities estimated by the linear rate model. The results also show that pore diffusion was the rate-limiting step in all absorbents for rigid proteins such as ribonuclease A and lysozyme. For structurally flexible proteins, conformational change contributed significantly to the overall reduced plate heights of the isocratic elution peaks. The physical properties of adsorbents, such as protein accessible porosity, pore size distribution, pore radius and pore connectivity, play important roles in determining the effective protein pore diffusivities.  相似文献   

18.
用参数Z表征疏水色谱中脲浓度与蛋白质分子的构象变化   总被引:7,自引:1,他引:7  
卫引茂  常晓青 《分析化学》1997,25(4):396-399
研究了5种标准蛋白在流动相中含有不同脲浓度条件下的疏水色谱保留行为。当脲浓度不变时,蛋白质的保留仍然服从计量置换保留模型,并可测定在该特定脲浓度条件下蛋白质的Z值。计量置换参数Z可作为疏水色谱中生物大分子的构象变化的表征。  相似文献   

19.
王建山  夏红军  万广平  刘家玮  白泉 《色谱》2016,34(12):1228-1233
以硅胶为基质、氨基己酸为配基制备了一种新型弱阳离子交换/疏水(WCX/HIC)双功能混合模式色谱固定相。该固定相配基具有一定的疏水性且含有羧基,在高盐浓度下表现为HIC的性质,可作为HIC固定相使用;在低盐浓度条件下表现为离子交换的性质,可作为WCX固定相使用。分别考察了该介质在WCX和HIC两种模式下对标准蛋白质的分离性能,并与商品柱进行比较。结果表明,所合成的WCX/HIC双功能固定相在WCX和HIC两种模式下对蛋白质均有较高的分离度和选择性,且分离能力与商品柱相当,两种模式下标准蛋白质的质量和活性回收率均大于93%,表明该柱具有“一柱二用”的功能,适于生物大分子的分离纯化。基于此双功能色谱柱构建的在线单柱二维液相色谱(2DLC-1C)可在60 min内实现8种蛋白质的快速分离。在70 min内完成了对蛋清中溶菌酶的二维纯化,纯度可达到98.3%。该技术中一根色谱柱可当作两根色谱柱使用,对蛋白质组学研究和重组蛋白药物的生产具有重要的应用价值。  相似文献   

20.
一种疏水色谱填料的特性及应用的研究   总被引:5,自引:0,他引:5  
王云  郭敏亮  姜守磊  陈天  姜涌明  陈云 《色谱》2000,18(4):354-356
 以交联壳聚糖为基质 ,正戊醛为配基 ,利用改进的方法制备了疏水作用色谱 (HIC)填料 ,并对该色谱填料的吸附行为和应用作了研究。结果表明 ,此类填料对蛋白质的吸附行为符合疏水相互作用理论 ,对α 淀粉酶的纯化活性回收率大于 80 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号