首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringerence Δn i and refractive indices n i of (NH4)2SO4 crystals has been investigated. It is shown that the dispersion of n i (λ) and Δn i (λ) is normal and sharply increases with approach to the absorption edge. It is established that uniaxial pressure does not change the character of the dispersions dn i / and dΔn i / and only affects their magnitudes. It is shown that the increase in the refractive indices under uniaxial stress is mainly due to the increase in the refraction caused by the increase in the band gap and long-wavelength shift of the UV absorption band maximum.  相似文献   

2.
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction ΔL/L. The measured ΔL/L(H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the ΔL/L(H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4–100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.  相似文献   

3.
The effect of a uniaxial mechanical compression (σm ≤ 100 bar) on the spectral dependences (300–800 nm) of the birefringence Δn i and refractive indices n i of K2SO4 crystals is studied. The electronic polarizabilities, refractions, and parameters (λ0i , B 1i ) of ultraviolet oscillators of mechanically compressed crystals are calculated. It is shown that the dispersions of Δn i(λ) and n i(λ) are normal and sharply increase near the absorption edge. It is found that the uniaxial compression changes the value of the dispersions dΔn i/dλ and dn i/dλ rather than their character. It is ascertained that the simultaneous action of the compressions σx and σz, as well as of σy and σz, leads to the appearance of new isotropic states in the K2SO4 crystal, which manifests itself in the equality of corresponding birefringences. It is shown that the baric dependences n i(σ) are determined by the change in the density of oscillators (~30%), by the shift of the absorption edge and effective band maximum and by the change in the oscillator strength (~70%).  相似文献   

4.
The dimension D of a polycrystalline film and the optical anisotropy m = εzx of uniaxial crystallites with the principal components εx = εy and εz of the tensor of the dielectric constant have been shown to produce a strong influence on the effective dielectric constant εD* and the effective refractive index nD* = (εD*)1/2 of the film in the optical transparency region, as well as on the boundaries of the intervals BDl ≤ εD*BDu. The intervals Δ2(m) = B2lB2u and Δ3(m) = B3lB3u are separated by a gap for m in the range 1 < m < 2, whereas the theoretical dependence ε2*(m) is separated by a gap from the interval Δ3(m) for m in the range 1 < m < 4. This is confirmed by a comparison of the experimental (noP) and theoretical (nD*) ordinary refractive indices for uniaxial polycrystalline films of the conjugated polymer poly(p-phenylene vinylene) (PPV) with uniaxial crystallites and appropriate values of m. In the visible transparency region of the PPV films with a change in m(λ) in the range 2 < m(λ) < 3 due to the dependence of the components εx,z(λ) on the light wavelength λ, the refractive indices noP2(λ) = εoP(λ) are consistent with the theoretical values of ε2*(λ) and lie outside the interval Δ3(m). For m(λ) > 3 near the electronic absorption band of the crystallites, the values of εoP(λ) lie in the region of the overlap of the intervals Δ2(m) and Δ3(m). The boundaries mc of the range 1 < m < mc are determined, for which the interval Δ2(m) is separated by a gap from the dependences ε3*(m) corresponding to the effective medium theory with spherical crystallites and hierarchical models of a polycrystal, as well as from the proposed new dependence ε3*(m).  相似文献   

5.
The thermophysical properties of oxyfluoride (NH4)3NbOF6 were studied in detail over wide ranges of temperatures and pressures. At atmospheric pressure, a sequence of four structural phase transitions was established with the following changes in entropy: ΔS 1 = Rln 2.7, δS 2 = Rln38.3, ΔS 3 = 0.08R, and ΔS 4 = 0.17R. An external hydrostatic pressure was found to narrow the region of existence of the initial cubic phase. A triple point was detected in the p-T diagram; at a pressure above 0.07 GPa, the transition between the tetragonal and monoclinic phases occurs through a distorted high-pressure phase.  相似文献   

6.
The results obtained in a cell with a distance between windows on the order of several hundreds of nanometers (the so-called “nanocell”) are presented. The nanocell thickness L in the vertical direction changes from 100 to 900 nm. It is shown that the use of a nanocell with thickness L = λ/2, where λ is a laser wavelength resonant to the atomic transition D2 in sodium atoms, provides sub-Doppler resolution of transmission and fluorescence spectra.  相似文献   

7.
The effect of hydrostatic (P=10–400 MPa) and uniaxial σ=0–5.8 MPa) pressures on birefringence Δn of Cu6PS5Br single crystals at the wavelength λ=0.6328 μm has been studied below the temperature of the ferroelastic phase transition (T<268 K). It is found that Δn linearly depends on pressure. The obtained data are analyzed.  相似文献   

8.
We show in details how to determine and identify the algebra g = {Ai} of the infinitesimal symmetry operators of the following pseudo-diffusion equation (PSDE) LQ\(\left[ {\frac{\partial }{{\partial t}} - \frac{1}{4}\left( {\frac{{{\partial ^2}}}{{\partial {x^2}}} - \frac{1}{{{t^2}}}\frac{{{\partial ^2}}}{{\partial {p^2}}}} \right)} \right]\) Q(x, p, t) = 0. This equation describes the behavior of the Q functions in the (x, p) phase space as a function of a squeeze parameter y, where t = e 2y. We illustrate how G i(λ) ≡ exp[λA i] can be used to obtain interesting solutions. We show that one of the symmetry generators, A 4, acts in the (x, p) plane like the Lorentz boost in (x, t) plane. We construct the Anti-de-Sitter algebra so(3, 2) from quadratic products of 4 of the A i, which makes it the invariance algebra of the PSDE. We also discuss the unusual contraction of so(3, 1) to so(1, 1)? h2. We show that the spherical Bessel functions I 0(z) and K 0(z) yield solutions of the PSDE, where z is scaling and “twist” invariant.  相似文献   

9.
The magnetocaloric effect ΔTex and the magnetization in La1?xSrxMnO3 single crystals (x=0.1, 0.125, 0.175, 0.3) have been experimentally studied. The magnetic entropy and the magnetocaloric effect ΔTth were computed from magnetization curves. All the samples exhibited a maximum in the ΔTth(T) curve at T=T max . A step was observed on the ΔTex(T) curve in the region of T max , with the value of ΔTex on this step being substantially smaller than ΔTth. The step on the ΔTex(T) curve was followed by a maximum, which appeared at a temperature 20–40 K above T max . This anomalous behavior of ΔTex and ΔTth is assigned to the coexistence of two magnetic (ferro-and antiferromagnetic) phases in the crystal. The calculated value of ΔTth is determined primarily by the ferromagnetic part of the crystal and disregards the negative contribution from the antiferromagnetic part of the crystal to ΔTex.  相似文献   

10.
On an example of the D2-line of the Rb atoms the work of the frequency reference of atomic transitions is demonstrated, based on the application of the spectrum of a selective reflectance (SR) from the boundary of atom vapors with the use of nano-cell (NC) with the thickness L ~ λ/2, where λ is the laser wavelength equal to 780 nm. When changing the thickness of the nano-cell near the thickness L ~ λ/2, we observe the inversion of sign of the SR slope profile which is positive when L < λ/2 and negative when L > λ/2. In the case when the incidence angle of the laser beam on the surface of the nano-cell is close to the normal, in real-time it is possible to form the derivative of the SR which represents a resonance peak with ~35 MHz spectral linewidth and located at the atomic transition. The phenomenon of oscillation of the sign of slope while changing the nano-cell thickness from L ~ λ/2 up to L ~ 3/2λ is demonstrated. The practical application of the SR is noted.  相似文献   

11.
The anionic conductivity of HoF3 single crystals with a β-YF3 structure (orthorhombic crystal system, space group Pnma) is investigated over a wide range of temperatures (323–1073 K). The unit cell parameters of HoF3 crystals are as follows: a=0.6384±0.0009 nm, b=0.6844±0.0009 nm, and c=0.4356±0.0005 nm. It is revealed that the conductivity anisotropy of the HoF3 crystals is insignificant over the entire temperature range covered. The crossover from one mechanism of ion transfer to another mechanism is observed near the critical temperature Tc≈620 K. The activation enthalpy of electrical conduction is found to be ΔH1=0.744 eV at T<Tc and ΔH2=0.43 eV at T>Tc. The fluorine vacancies are the most probable charge carriers in HoF3 crystals. The fluorine ionic conductivities at temperatures of 323, 500, and 1073 K are equal to 5×10?10, 5×10?6, and 2×10?3 S cm?1, respectively.  相似文献   

12.
New absorption bands due to spin-forbidden transitions from the ground state to excited triplet states are found at 295 K in the near-IR absorption spectra of a number of Cu(II) complexes of octaethylporphyrin (OEP) that differ in the nature, number, and position of their side substituents. The frequency distribution, number, and nature of these transitions are analyzed using computer decomposition of complex contours into Gaussian components and additional data from the phosphorescence and phosphorescence excitation spectra (295-77 K). The d-π exchange integrals, determining the energy splitting ΔE = E(2T1)–E(4T1) in the compounds under study, are calculated on the basis of the experimental data obtained. It is shown that, in addition to the formally spin-allowed 2S02T1 transition (λmax = 833 nm), the absorption spectrum of the nonplanar CuOETPP molecule at 295 K exhibits the low-intensity spin-forbidden 2S04T1 transition (λmax = 937 nm). For this compound at 77 K, phosphorescence from the 4T1 state is observed (λmax = 955 nm), with a quantum yield equal to ?Ph = 0.0015 and a decay time amounting to τPh = 190 ns. For the CuOEP-Ph(o-NO2) molecule, which contains the electron-acceptor nitro group, direct absorption from the ground state S0 to a charge transfer (CT) state (λmax = 845 nm) is observed at 295 K. The extinction coefficient of this absorption and the energy of the CT state are determined.  相似文献   

13.
Thin films of chalcogenide glasses deposited on quartz glass substrates by thermal evaporation in vacuum have been investigated. The dependences n(λ) and k(λ) for films of different composition have been determined from the transmission spectra. Expressions of the n = A + BL + CL 2 + 2 + 4 type (L = (λ 2 ? 0.028)?1 and A, B, C, D, and E are constants) for calculating the refractive indices of As2Se3, AsSe4, AsS4, and AsS16.2Se16.2 films in the wavelength range from 0.5 to 2.5 μm are reported.  相似文献   

14.
The temperature dependence of the refractive indices of lithium niobate crystals of stoichiometric composition is analyzed. It is shown that, in the region of the ferroelectric phase, the electronic dipole polarizability of oxygen ions significantly depends on the crystal temperature. The difference in the refractive indices Δn = n e ? n o in the paraelectric phase at λ = 1200 nm is determined to be 0.036 ± 0.003.  相似文献   

15.
The relationship among the Coherence time (CT) τ, the Variation frequency λ, the energy separation ΔE and coupling constant α in quantum well was investigated using Pekar type variational method. The results indicated that the Coherence time τ is positively proportional to the Variation frequency λ, but the energy separation ΔE and coupling constant α are negatively correlated with the Coherence time τ. When ΔE is more than 10ev, and when α is more than 5, τ decreases sharply.  相似文献   

16.
Corrections of order α 5 and α 6 are calculated for muonic hydrogen in the fine-structure interval ΔE fs = E(2P 3/2) − E(2P 1/2) and in the hyperfine structure of the 2P 1/2-and 2P 3/2-wave energy levels. The resulting values of ΔE fs = 8352.08 μeV, Δ hfs(2P 1/2) = 7819.80 μeV, and Δ hfs(2P 3/2) = 3248.03 μeV provide reliable guidelines in performing a comparison with relevant experimental data and in more precisely extracting the experimental value of the (2P–2S) Lamb shift in the muonic-hydrogen atom. Original Russian Text ? A.P. Martynenko, 2008, published in Yadernaya Fizika, 2008, Vol. 71, No. 1, pp. 126–136.  相似文献   

17.
The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D1 line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D1 line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocell had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power PL ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the Fg = 3 → Fe = 2 transition of the 85Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.  相似文献   

18.
Features of the effect of Faraday rotation (the rotation of the radiation polarization plane) in a magnetic field of the D 1 line in Cs atomic vapor in a nanocell with the thickness L varying in the range of 80–900 nm have been analyzed. The key parameter is the ratio L/λ, where λ = 895 nm is the wavelength of laser radiation resonant with the D 1 line. The comparison of the parameters for two selected thicknesses L = λ and λ/2 has revealed an unusual behavior of the Faraday rotation signal: the spectrum of the Faraday rotation signal at L = λ/2 = 448 nm is several times narrower than the spectrum of the signal at L = λ, whereas its amplitude is larger by a factor of about 3. These differences become more dramatic with an increase in the power of the laser: the amplitude of the Faraday rotation signal at L = λ/2 increases, whereas the amplitude of the signal at L = λ almost vanishes. Such dependences on L are absent in centimeter-length cells. They are inherent only in nanocells. In spite of a small thickness, L = 448 nm, the Faraday rotation signal is certainly detected at magnetic fields ≥0.4 G, which ensures its application. At thicknesses L < 150 nm, the Faraday rotation signal exhibits “redshift,” which is manifestation of the van der Waals effect. The developed theoretical model describes the experiment well.  相似文献   

19.
We studied selective reflection (SR) of laser radiation from a window of a nanocell with thickness L ~ λ1,2/2 filled with Rb and Cs atoms, where λ1 = 780 nm and λ2 = 852 nm are the wavelengths resonant with the D2 laser lines for Rb and Cs, respectively. It is demonstrated that the negative derivative of the SR signal profile for L > λ/2 changes to the positive one for L < λ/2. It is shown that the real-time formation of the SR signal profile derivative (SRD) with the spectral width 30–40 MHz and located at the atomic transition is, in particular, a convenient frequency marker of D2 transitions in Rb and Cs. The amplitudes of SRD signals are proportional to the atomic transition probabilities. A comparison with the known saturated absorption (SA) method demonstrated a number of advantages, such as the absence of cross-over resonances in the SRD spectrum, the simplicity of realization, a low required power, etc. An SRD frequency marker also operates in the presence of the Ne buffer gas at a pressure of 6 Torr, which allowed us to determine the Ne–Rb collisional broadening, whereas the SA method is already inapplicable at buffer gas pressures above 0.1 Torr. The realization simplicity makes the SRD method a convenient tool for atomic spectroscopy. Our theoretical model well describes the SRD signal.  相似文献   

20.
The effective interaction ΔUAMM of the anomalous magnetic moment (AMM) of an electron with the Coulomb field of an extended nucleus is analyzed. As soon as the q2 dependence of the electron formfactor F2(q2)is taken into account from the beginning, the AMM is found to be dynamically screened at small distances of r ? 1/m. The ΔUAMM effects on the low-lying electronic levels of a superheavy extended nucleus with Zα > 1are analyzed using the nonperturbative approach. The growth rate of the ΔUAMM contribution with increasing Z is shown to be essentially nonmonotonic. At the same time, the energy shifts of electronic levels in the vicinity of the threshold of the lower continuum monotonically decrease in the region Z ?Zcr,1s. The latter result is generalized to the whole self-energy contribution to energy shifts of electronic levels, thus also referring to the possible behavior of QED radiative effects with virtual-photon exchange, considered beyond the framework of the perturbative expansion in Zα.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号