首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
Crude oil contains such an extensive range of compounds that a complete analysis is impossible. Fractionation by chemical properties is often used to simplify analytical handling. This work presents a high performance liquid chromatography (HPLC) method using normal phase chromatography on a cyano-bonded phase column to separate acid extracts from crude oils into four fractions; non-polar compounds, saturated carboxylic acids, phenols and polyfunctional acids. The method has been developed both in analytical scale for characterisation of acid extracts, and in preparative scale to provide sufficient sample amounts for further analysis by complementary methods.  相似文献   

2.
This study presents a quantitative gas chromatography–mass spectrometry analysis of bicyclic sesquiterpanes (BSs) in numerous crude oils and refined petroleum products including light and mid-range distillate fuels, residual fuels, and lubricating oils collected from various sources. Ten commonly recognized bicyclic sesquiterpanes were determined in all the studied crude oils and diesel range fuels with principal dominance of BS3 (C15H28), BS5 (C15H28) and BS10 (C16H30), while they were generally not detected or in trace in light fuel oils like gasoline and kerosene and most lubricating oils. Laboratory distillation of crude oils demonstrated that sesquiterpanes were highly enriched in the medium distillation fractions of ∼180 to 481 °C and were generally absent or very low in the light distillation fraction (boiling point to ∼180 °C) and the heavy residual fraction (>481 °C). The effect of evaporative weathering on a series of diagnostic ratios of sesquiterpanes, n-alkanes, and biomarkers was evaluated with two suites of weathered oil samples. The change of abundance of sesquiterpanes was used to determine the extent of weathering of artificially evaporated crude oils and diesel. In addition to the pentacyclic biomarker C29 and C30 αβ-hopane, C15 and C16 sesquiterpanes might be alternative internal marker compounds to provide a direct way to estimate the depletion of oils, particularly diesels, in oil spill investigations. These findings may offer potential applications for both oil identification and oil-source correlation in cases where the tri- to pentacyclic biomarkers are absent due to refining or environmental weathering of oils.  相似文献   

3.
In this paper, we report for the first time a microstructural characterization of pyrolysis oils obtained from biomass. Bio crude oils (BCOs) are good candidates as substitutes for mineral oils as fuels. By using small-angle neutron scattering (SANS), we show that BCOs are nanostructured fluids constituted by a complex continuous phase and nanoparticles mainly formed by the association of units of pyrolytic lignins. The aggregation of these units during the time produces branched structures with fractal dimension D(f) between 1.4 and 1.5, which are responsible for BCO aging. SANS results fully support the recently formulated thermal ejection theory, accounting for the mechanism of formation of the lignin fraction in oils obtained from fast pyrolysis of biomass.  相似文献   

4.
Yu.L. Shishkin   《Thermochimica Acta》2006,440(2):156-165
A calorimetric-thermogravimetric method is described of determining mass percent contents of distillate fractions, paraffins, base oils, resins, asphaltenes and carbines in various crude oils. The method is based on recording DSC curves of a 10–15 mg sample heated in air in a calorimetric-cell at a rate of 40–50 °C/min. Additionally, weight loss of sample is found at temperatures before and after the reaction. At temperatures from 220 °C or higher distillation of the hydrocarbon mixture starts to be accompanied by its exothermic oxidation, thereby making possible monitoring the distillation (oxidation) of consecutive HC fractions by simple calorimetric-techniques. Differential scanning calorimeter “Thermodat” of high-calorimetric-resolution and sensitivity equipped with dedicated software was used for conducting the experiments and performing all the calculations. Percent contents of the main constituents in a number of heavy and light crude oils were determined and formulas for establishing paraffinic, base oil and coke-forming potentials of crude oils and oil residues derived. One full analysis of a sample takes no longer than 1.0–1.5 h. The method can be used for on-line quality control of various petroleum products, such as atmospheric and vacuum oil residues, cracking residues, lubricants, ceresins and paraffins.  相似文献   

5.
Practically all the conventional chromatographic techniques are used in the characterization of the highly complex mixtures of organic compounds occurring in fuels, heavy fractions, and crude oils. This paper surveys the techniques employed for class determination, preparative fractionation of the main classes, and determination of subgroups after class fractionation.  相似文献   

6.
Four commercial Saudi Arabian crude oils were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). These crude oils, Arab Berri (AB), Arab Light (AL), Arab Medium (AM) and Arab Heavy (AH), were also subjected to the traditionally employed true boiling point (TBP) distillation and simulated distillation (SIMDIST). The TG/DTA data show that the hydrocarbons present in these crude oils fall into four groups: the volatiles, the low molecular weight, the medium molecular weight and the high molecular weight compounds. These four types of hydrocarbons were observed to display certain trends, such that the volatile and low molecular weight hydrocarbons increased, while the medium and high molecular weight hydrocarbons decreased with the lightness of the crude. The volatile contents of AB, AL, AM and AH crude oils up to 280°C were 50.1, 42.2, 42.3 and 38.5 mass percent, respectively. This confirms that AB is the lightest of these crude oils with maximum volatile content. The mass percentage loss from the TG results is in good agreement with the percentage distilled from TBP (ASTM D 2892) and SIMDIST. During evaporation, the TG mass loss follows a similar trend to those of the TBP and SIMDIST results and thus behaves like distillation. During the oxidative degradation, the TG curve shows a higher mass loss as compared to the distillation data. The higher deviation of the TG mass loss and percentage distilled at the higher-temperature end of the curve may be attributed to the higher content of asphaltenes and carbonaceous material present in AH as compared to the AB crude oil. At around 200°C, the TG mass loss curve intersects the TBP and SIMDIST curves and shows a derivation from distillation behaviour. This intersection temperature of the TG and distillation curves is observed to decrease with the heaviness of the crude and can be an indication of the onset of thermal degradation of hydrocarbons present in the crude oil. On the whole, the TG data closely resemble the distillation results.  相似文献   

7.
A method is described for the systemic identification and quantitative analysis of nitrogen-containing compounds and other non-hydrocarbons in crude oils. The pre-fractionation of a crude oil sample into 7 fractions was performed by di-adsorption column chromatography using neutral aluminum oxide and silica gel. A subsequent high-resolution separation of individual components was achieved by using capillary column gas chromatography, and compound types were detected by a mass spectrometer. In conjunction with a chemometric method, the compounds in the fractions were further resolved or separated, which made it possible to identify some nitrogen-containing compounds and other non-hydrocarbons in crude oils. To a certain extent, this method could relieve the difficulty of classical analysis in identifying those species with very low contents or incompletely separation, particularly in the cases where authentic standards were not available for addition into the unknown samples in order to reveal what indeed existed in them. The structures and contents of 168 nitrogen-containing compounds in one crude sample and 60 non-nitrogen-containing compounds in one of non-hydrocarbon fractions of this oil sample were determined, and the addition-recovery examination of some standard compounds showed that the analytical veracity was satisfactory.  相似文献   

8.
The results of research on the optimization of the thin-layer chromatography-flame ionisation detection for the determination of group composition of natural base oils, including separation of the aromatics into subgroups, are presented. Neutral base oils obtained in several steps of refining from vacuum distillation petroleum fractions are the most difficult to analyze by hydrocarbon group type analysis (HGTA) because of the high content of aliphatic fragments in their molecules. Factors affecting the accuracy and precision of the results were identified. The paper presents the analytical procedure, including two different calibration methods, as well as the results of studies on the reproducibility of HGTA of typical base oils of different viscosity classes under the optimized conditions. The same conditions were found suitable for HGTA of other high-boiling petroleum fractions by TLC with flame ionisation detection. The paper also introduces a new procedure for reproducible determination of polar fractions in base oils utilizing solid-phase extraction columns, and presents a corrected procedure for the determination of saturated compounds and aromatics (mono-, bi- and polycyclic) in base oils by column liquid chromatography.  相似文献   

9.
Roots of Vetiveria zizanioides Nash (Mae Hae; Thai ecotype) planted in three different cultivation systems (normal soil, normal soil with added microbes and semi- hydroponically) were extracted using a simultaneous steam distillation and solvent extraction (SDE) apparatus. Yields of the essential oils obtained were 0.27, 0.18 and 0.06%, respectively. The separation profiles obtained by comprehensive two-dimensional gas chromatography (GCxGC) and solid phase microextraction (SPME)-GCxGC analyses of the crude essential oils showed a total of 156 and 48 well-resolved components, respectively. The highly volatile fractions isolated from the three essential oils by SPME were subjected to analysis by GC-MS and 42 compounds were identified in total. Volatile component profiles of the oils obtained by normal soil and semi-hydroponic cultivation were similar, whereas a quantitative difference was noted in some major volatiles when the cultivation system containing microbes was utilized.  相似文献   

10.
The accurate establishment of oil similarity is a longstanding problem in petroleum geochemistry and a necessary component for resolving the architecture of an oil reservoir. Past limitations have included the excessive reliance on a relatively small number of biomarkers to characterize such complex fluids as crude oils. Here we use multiway principal components analysis (MPCA) on large numbers of specific chemical components resolved with comprehensive two-dimensional gas chromatography-flame ionization detection (GC×GC-FID) to determine the molecular relatedness of eight different maltene fractions of crude oils. MPCA works such that every compound eluting within the same first and second dimension retention time is quantitatively compared with what elutes at that same retention times within the other maltene fractions. Each maltene fraction and corresponding MPCA analysis contains upwards of 3500 quantified components. Reservoir analysis included crude oil sample pairs from around the world that were collected sequentially at depth within a single well, collected from multiple depths in the same well, and from different depths and different wells but thought to be intersected by the same permeable strata. Furthermore, three different regions of each GC×GC-FID chromatograms were analysed to evaluate the effectiveness of MPCA to resolve compositional changes related to the source of the oil generating sediments and its exposure to biological and/or physical weathering processes. Compositional and instrumental artefacts introduced during sampling and processing were also quantitatively evaluated. We demonstrate that MPCA can resolve multi-molecular differences between oil samples as well as provide insight into the overall molecular relatedness between various crude oils.  相似文献   

11.
Summary Diaromatics are geochemically significant constituents of crude oils. Their determination is usually achieved by elaborate prefractionation methods, such as medium pressure liquid chromatography and HPLC, prior to capillary gas chromatography. The present contribution describes the quantitative analysis of methylnaphthalenes, ethylnaphthalenes, and dimethylnaphthalenes in selected crude oils by two-dimensional capillary GC. Since the method does not comprise any work-up procedure the determination of geochemical parameters (alkylnaphthalene concentration ratios) is performed on the original, untreated crude oil samples. Accordingly, the analytical results reflect the original composition. The influence by evaporational losses in the laboratory is minimized.  相似文献   

12.
IR and NIR spectra were correlated to Hildebrand and Hansen solubility parameters through use of multivariate data analysis. PLS‐1 models were developed and used to predict solubility parameters for solvents, crude oils, and SARA fractions. PLS regression showed potential for good correlation of the solubility parameters with IR and NIR spectra. Principal component analysis of IR spectra showed that crude oils are grouped according to their relative contents of heavy components such as asphaltenes. PCA of IR spectra for SARA fractions resulted in obvious groupings of the respective fractions. Prediction of solubility parameters from IR spectra of polymers, crude oils, and SARA fractions gave values that are comparable to literature values. This study indicates that correlation of solubility parameters with IR and NIR spectra is possible. In turn, it may be possible to develop models that can predict the polarities of crude oils and crude oil fractions such as resins and asphaltenes.  相似文献   

13.
Detailed investigation of solvent‐separated fractions of petroleum vacuum residues is necessary for understanding the separation mechanism using different solvents and to prepare better feedstocks for secondary conversion processes. The efficiency of different solvents to remove polars and insolubles from vacuum residues (of two Indian crude oils) has been studied. The solvents used were n‐heptane, n‐hexane, and n‐pentane (non‐polar) and ethyl acetate (polar). Soluble fractions were characterized for hydrocarbon group type analysis using high performance liquid chromatography (HPLC), average molecular weights using size exclusion chromatography (SEC), and boiling point distribution using high temperature gas chromatography (HTGC). Method development for HPLC analysis involved the study of parameters such as columns, solvent polarity, detectors, model compounds study, calibration, flow, and solvent gradient programming. The study demonstrated that ultimate soluble fractions have the least content of polar structures of the kind which can cause problems, during cracking and are least prone to cracking. The HPLC, SEC, and simulated distillation (SIMDIS) methods developed and standardized are simple, accurate, and suitable for the rapid assay needed for quick compositional surveys.  相似文献   

14.
The estimation of physicochemical parameters such as distillation points and relative densities still plays an important role in the quality control of gasoline and similar fuels. Their measurements according to standard ASTM procedures demands specific equipments and are time and work consuming. An alternative method to predict distillation points and relativity density by multivariate analysis of comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) data is presented here. Gasoline samples, previously tested according to standard methods, were used to build regression models, which were evaluated by external validation. The models for distillation points were built using variable selection methods, while the model for relativity density was built using the whole chromatograms. The root mean square prediction differences (RMSPD) obtained were 0.85%, 0.48%, 1.07% and 1.71% for 10, 50 and 90% v/v of distillation and for the final point of distillation, respectively. For relative density, the RMSPD was 0.24%. These results suggest that GC×GC-FID combined with multivariate analysis can be used to predict these physicochemical properties of gasoline.  相似文献   

15.
High-resolution differential scanning calorimetry was used to accurately establish the temperature intervals of oxidation/distillation of the major components of crude oils. Some theoretical aspects of the method of dynamic microdistillation, enabling consecutive distillation (oxidation) of the main components of hydrocarbon mixtures, are discussed. The experimental TG-DSC curves show that the temperature scan of the run can be divided into six regions, of which the first belongs to simple distillation of the sample's liquid constituent (the distillate) and the others to oxidative cracking distillation of the solid (heavy) residue. The latter occur in the order paraffins + light oils, middle base oils, heavy base oils, condensed aromatics (resins) and asphaltenes. The probable oxidation mechanisms of different classes of petroleum hydrocarbons operating in different temperature regions are discussed. Full quantitative fractional and group component analysis of a number of crude oils of different chemical classes and geological age was carried out by the combined TG-DSC techniques under specially chosen experimental conditions (those of dynamic microdistillation).  相似文献   

16.
The concentrations of 11 trace and minor elements (Na, Al, S, Cl, Ca, V, Mn, Ni, As, Br, I) have been measured by instrumental neutron activation analysis in a sample of crude oil from Venezuela, and in 7 of its distillates and in the final residue produced in a primary distillation unit. Concentrations range from 0.5 ppb to 2.0%. The elements have been classified in 4 categories on the basis of their distributions among the fractions analyzed. The results on concentrations have also been used to establish elemental balances in the distillation unit studied operating under steady-state conditions. Only S and V have been found to give rise to losses by emission.  相似文献   

17.
A. Voelkel  J. Fall 《Chromatographia》1995,41(7-8):414-418
Summary The Flory-Huggins interaction parameter, κ 1,2 , was determined for a number of fractions separated from vacuum distillation residues of natural oils. Examined fractions were used as liquid stationary phases in inverse gas chromatography. The chemical character of the fractions was discussed in terms of the interaction parameter.  相似文献   

18.
A. Voelkel  J. Fall 《Chromatographia》1995,41(5-6):414-418
Summary The Flory-Huggins interaction parameter,κ 1,2, , was determined for a number of fractions separated from vacuum distillation residues of natural oils. Examined fractions were used as liquid stationary phases in inverse gas chromatography. The chemical character of the fractions was discussed in terms of the interaction parameter.  相似文献   

19.
Determination of phenols in crude oils and derived fuels requires a sample pretreatment step, usually performed by liquid-liquid extraction or preparative chromatography. In this work, sample preparation is accomplished using a silicone membrane separation unit coupled on-line to a high performance liquid chromatograph with amperometric and ultraviolet detection. The contents of phenol, cresols and dimethylphenols were determined in thirty three samples including three crude oils, twenty gasolines and ten diesel fuels. The whole set-up is fully automated through a feed-back system that allows the microcomputer controlling the process to examine the signals in real time and to make decisions while the experiment is running.  相似文献   

20.
Four samples from different crude oils were used for this study: light and heavy crude oils from Iran and two crude oils from Egypt, namely, Ras Gharb and Suez mix. The asphaltenes were separated from these crude oils and then the maltene (non‐asphaltenic fraction) was fractionated into waxes, aromatics, and resins. All fractions were characterized using FTIR and UV spectroscopic analyses in addition to gel permeation chromatograph (GPC). These fractions were tested for their emulsion stability. For chemometric analysis different parameters (variables) have been used to study the effect of different fractions (objects) on the emulsion stability. Such variables included the integrated areas under the stretching absorption peaks of CH in the range of 3000–2800 cm?1, C?O in the range of 1750–1650 cm?1, and the aromatic C?C in the range of 1650–1550 cm?1, as well as UV absorption value at 235 nm and average molecular weight (MW). Principal component analysis (PCA) and multiple linear regression (MLR) were conducted for examining the relationship between multiple variables and the stability of water‐in‐crude oil emulsions. The results of PCA explain the interrelationships between the observations and variables in multivariate data. The correlation coefficients between different parameters derived from PCA reveals that the UV absorption value and MW are strongly correlated with emulsion stability. It also reveals that the resins, asphaltenes, and maltene have better emulsion stability than waxes and lower molecular weight aromatics. The linear relationship between the parameters and the stability of water‐in‐crude oil emulsions using MLR was modeled according to the better statistical results. The obtained mathematical model can be used to predict the stability of water‐in‐crude oil emulsions from the chemical groups and functionalities in each crude oil fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号