首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L?1 range between 0.75 and 5 ng L?1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n?=?5, 1,000 ng L?1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L?1) and WWTP B (12.29 μg L?1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L?1.
Figure
Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples  相似文献   

2.
Contamination by Brettanomyces is a frequent problem in many wineries that has a dramatic effect on wine aroma and hence its quality. The yeast Brettanomyces/Dekkera is involved in the formation of three important volatile ethylphenols—4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol—that transmit an unpleasant aroma to wine that has often been described as ‘medicinal’, ‘stable’ or ‘leather’. This study proposes an in situ derivatisation and headspace solid-phase microextraction– gas chromatography coupled to mass spectrometry method to determine the three ethylphenols in red Brettanomyces-tainted wines. The most important variables involved in the derivatisation (acetic anhydride and base concentration) and the extraction (extraction temperature and salt addition) processes were optimised by experimental design. The optimal conditions using 4 mL of wine in 20-mL sealed vials were 35 μL of acetic anhydride per millilitre of wine, 1 mL of 5.5% potassium carbonate solution and 0.9 g of sodium chloride and the extraction was performed with a divinylbenzene–carboxen–poly(dimethylsiloxane) fibre at 70 °C for 70 min. Then, the performance characteristics were established using wine samples spiked with the ethylphenols. For all compounds, the detection limits were below the odour threshold reported in the literature and they were between 2 and 17 μg L−1 for 4-ethylguaiacol and 4-ethylphenol, respectively. Intermediate precision (as relative standard deviation) was acceptable, with values ranging from 0.3 to 12.1%. Finally, the method was applied in the analysis of aged Brettanomyces-tainted wines.  相似文献   

3.
A fully automated method using direct immersion solid-phase microextraction (DI-SPME) and headspace on-fiber silylation for simultaneous determinations of exogenous endocrine-disrupting chemicals (EDCs) and endogenous steroid hormones in environmental aqueous and biological samples by gas chromatography–mass spectrometry (GC-MS) was developed and compared to a previously reported manual method. Three EDCs and five endocrine steroid hormones were selected to evaluate this method. The extraction and derivatization time, ion strength, pH, incubation temperature, sample volume, and extraction solvent were optimized. Satisfactory results in pure water were obtained in terms of linearity of calibration curve (R 2=0.9932–1.0000), dynamic range (3 orders of magnitude), precision (4–9% RSD), as well as LOD (0.001–0.124 μg L−1) and LOQ (0.004–0.413 μg L−1), respectively. These results were similar to those obtained using a manual method, and moreover, the precision was improved. This new automated method has been applied to the determinations of target compounds in real samples used in our previous study on a manual SPME method. Exogenous octylphenol (OP), technical grade nonylphenol (t-NP), and diethylstilbestrol (DES) were at 0.13, 5.03, and 0.02 μg L−1 in river water and 3.76, 13.25, and 0.10 μg L−1 in fish serum, respectively. Natural steroid hormones estrone (E1), 17β-estradiol (E2), and testosterone (T) were at 0.19, 0.11, and 6.22 μg L−1 in river water; and in female fish serum E1, E2, and pregnenolone (PREG) were at 1.37, 1.95, and 6.25 μg L−1, respectively. These results were confirmed by the manual method. The developed fully automated SPME and on-fiber silylation procedures showed satisfactory applications in environmental analysis and the performances show improved precision and a reduced analysis time compared to the manual method.  相似文献   

4.
A new analytical method based on simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC–MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid–liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750 μL of acetone as disperser solvent, 100 μL of chloroform as extraction solvent and 100 μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ng mL−1 range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended.  相似文献   

5.
One-step in situ microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) followed by gas chromatography–mass spectrometry (GC–MS) analysis is presented as a fast and solvent-free technique to determine synthetic polycyclic musks in sewage sludge and sediment samples. Six synthetic polycyclic musks (galaxolide (HHCB), tonalide (AHTN), celestolide (ADBI), traseolide (ATII), cashmeran (DPMI) and phantolide (AHMI)) were selected in the method development and validation. The effects of extraction parameters for the quantitative extraction of these analytes by one-step MA-HS-SPME were systematically investigated. The dewatered solid sample mixed with 20-mL deionized water (containing 3 g of NaCl in a 40-mL sample-vial) was efficiently extracted by a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber placed in the headspace when the extraction slurry was microwave irradiated at 80 W for 5 min. The limits of detection (LODs) ranged from 0.04 to 0.1 ng/g, and the limits of quantification (LOQs) ranged from 0.1 to 0.3 ng/g (fresh weight). A preliminary analysis of sludge and sediment samples revealed that HHCB and AHTN were the two most commonly detected synthetic polycyclic musks; using a standard addition method, their total concentrations were determined to range from 0.3 to 10.9 ng/g (fresh weight) with relative standard deviation (RSD) ranging from 4% to 10%.  相似文献   

6.
A fully automated procedure using alkaline hydrolysis and headspace solid-phase microextraction (HS-SPME), followed by on-fiber derivatization and gas chromatographic–mass spectrometric (GC–MS) detection has been developed for determination of cannabinoids in hemp food samples. After addition of a deuterated internal standard, the sample was hydrolyzed with sodium hydroxide and submitted to direct HS-SPME. After absorption of analytes for on-fiber derivatization, the fiber was placed directly into the headspace of a second vial containing N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA), before GC–MS analysis. Linearity was good for 9-tetrahydrocannabinol (THC), cannabidiol, and cannabinol; regression coefficients were greater than 0.99. Depending on the characteristics of the matrix the detection limits obtained ranged between 0.01 and 0.17 mg kg–1 and the precision between 0.4 and 11.8%. In comparison with conventional liquid–liquid extraction this automated HS-SPME–GC–MS procedure is substantially faster. It is easy to perform, solvent-free, and sample quantities are minimal, yet it maintains the same sensitivity and reproducibility. The applicability was demonstrated by analysis of 30 hemp food samples. Cannabinoids were detected in all of the samples and it was possible to differentiate between drug-type and fiber-type Cannabis sativa L. In comparison with other studies relatively low THC concentrations between 0.01 and 15.53 mg kg–1 were determined.  相似文献   

7.
A simple and highly sensitive gas chromatographic method has been developed for the determination of low molecular weight short-chain aliphatic amines (SCAAs) after their simultaneous extraction and in-syringe derivatization with pentafluorobenzoyl chloride (PFBOC). Derivatization of the low molecular weight aliphatic amines in bicarbonate buffer of pH 10.5 with PFBOC was followed by immersed solvent microextraction. Derivatization conditions, including reagent concentration, reaction pH, ionic concentration of buffer, reaction time, stirring rate, reaction temperature and extraction solvent, have been investigated for method optimization. Linearity was studied within range of 0.15 pg ml−1–50 ng ml−1. The correlation coefficients were between 0.9934 and 0.9999. Detection limit of derivatized amines proved to be in the range of 0.117–1.527 pg ml−1, and the intraday and interday relative standard deviation (RSD) values were less than 8% with respect to peak area. The method was applied for analysis of lake, river and industrial waste water. The recoveries of extraction from lake, river and industrial waste water samples, which have been spiked with different levels of aliphatic amines, were in the range of 68–99%, 63–102% and 62–105%, respectively.  相似文献   

8.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

9.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

10.
There has been considerable public interest and a growing number of scientific studies linking certain phenolic compounds in grapes and wines, particularly trans-resveratrol (trans-3,5,4′-trihydroxystilbene, TRA), to human health benefits. Typical TRA concentrations in wine are very low. It is a polar compound with very low volatility, which makes it difficult to extract and to separate on a gas chromatography (GC) column without derivatization. In this study, a new method for trace analysis of TRA was developed using solid-phase microextraction (SPME) with on-fiber silylation derivatization. Multidimensional GC equipped with a heartcut valve and cryogenic focusing was coupled with a mass-selective detector and used for improved separations and analysis. The effects of SPME fiber selection, extraction time, temperature, and desorption time were investigated. The derivatization conditions, time/temperature and the volume of derivatization reagent were also optimized. The calibration curve was linear over the concentration range from 10 ng L−1 to 5 mg L−1, with a correlation coefficient of 0.9996. The average recovery of TRA in red wine was 83.6 ± 5.6%. The method detection limit (MDL) for TRA in ethanol:water (12.5:87.5, v/v) solution in this study was 7.08 ng L−1 whereas the MDL for TRA in pure water was 2.85 ng L−1. The new method was used to test the TRA content in six selected Iowa red wine samples. Measured concentrations varied from 12.72 to 851.9 μg L−1.  相似文献   

11.
A sample pretreatment method for the determination of 18 chlorophenols (CPs) in aqueous samples by derivatization liquid-phase microextraction (LPME) was investigated using gas chromatography–mass spectrometry. Derivatization reagent was spiked into the extraction solvent to combine derivatization and extraction into one step. High sensitivity of 18 CPs derivatives could be achieved after optimization of several parameters such as extraction solvent, percentage of derivatization reagent, extraction time, pH, and ionic strength. The results from the optimal method showed that calibration ranging from 0.5 to 500 μg L−1 could be achieved with the RSDs between 1.75% and 9.39%, and the limits of detection (LOD) are ranging from 0.01 to 0.12 μg L−1 for the CPs. Moreover, the proposed LPME method was compared with solid-phase microextraction (SPME) coupled with on-fiber derivatization technique. The results suggested that using both methods are quite agreeable. Furthermore, the recoveries of LPME evaluated by spiked environmental samples ranged from 87.9% (3,5-DCP) to 114.7% (2,3,5,6-TeCP), and environmental water samples collected from the Pearl River were analyzed with the optimized LPME method, the concentrations of 18 CPs ranged from 0.0237 μg L−1 (3,5-DCP) to 0.3623 μg L−1 (2,3,6-TCP).  相似文献   

12.
Primary aromatic amines (PAAs) have been broadly studied due to their high toxicity. In this work a method for the analysis of 22 PAAs in aqueous simulants has been developed. The method is based on a solid-phase extraction step using cation-exchange cartridges and the subsequent analysis of the extracts by ultra-high-performance liquid chromatography with mass spectrometric detection. The recoveries obtained for all the amines analyzed ranged between 81 and 109%, linear range was between 0.03 and 75 μg L−1, with the RSD values between 4.5 and 13.4% and an average value of 7.5% and limits of detection at μg L−1 level. The method has been applied to two real samples obtained from migration experiments of polyurethane based laminates to simulant B (water with 3% (w/v) acetic acid) which represents the worst case for the migration of aromatic amines. The main amines found in both samples were methylenedianiline isomers, obtained from the corresponding residual diisocyanates used during polyurethane adhesive polymerization. The total amine concentration found was 26 and 6.3 μg of aniline equivalents per kg of food simulant.  相似文献   

13.
Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatise sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography–mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L−1. The method also demonstrated good precision (repeatability: 3–7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L−1) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected from various locations in a drinking water distribution system. Some of the samples were shown to contain inorganic polysulfides, and their presence was associated with high sediment density in the system and the absence of disinfectant residual in the bulk water.  相似文献   

14.
A simple, precise and accurate method for the simultaneous determination of four UV filters and five polycyclic musks (PCMs) in aqueous samples was developed by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC–MS). The operating conditions affecting the performance of SPME-GC–MS, including fiber thickness, desorption time, pH, salinity, extraction time and temperature have been carefully studied. Under optimum conditions (30 μm PDMS fiber, 7 min desorption time, pH 7, 10% NaCl, 90 min extraction time at 24 °C), the correlation coefficients (r2) of the calibration curves of target compounds ranged from 0.9993 to 0.9999. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.2 to 9.6 ng L−1 and 0.7 to 32.0 ng L−1, respectively. The developed procedure was applied to the determinations of four UV filters and five PCMs in river water samples and internal standard was used for calibration to compensate the matrix effect. Good relative recoveries were obtained for spiked river water at low, medium and high levels. The proposed SPME method was compared with traditional SPE procedure and the results found in river water using both methods were in the same order of magnitude and both are quite agreeable.  相似文献   

15.
A method for the determination of 19 chlorophenols in industrial effluents samples using solid-phase microextraction (SPME) coupled to gas chromatography–mass spectrometry has been developed. Four kinds of different SPME fibres have been studied. Among them, the polyacrylate and carbowax®-divinylbenzene fibres were the most adequate. The extraction process was optimized by means of the experimental design, which allows the study of a large number of factors with a reasonable number of experiments. The optimized method allows the determination of the studied chlorophenols in complex matrices with a high organic content with detection limits down to 0.07?ng?mL?1 and RSD ranging from 4.4% to 13.8%. The recovery studies with spiked real effluent samples at low levels of chlorophenols ranged from 59.8% to 142.1% for the lowest level (0.5?ng?mL?1) and from 79.6% to 115.8% for the highest spiked level (2?ng?mL?1). These results show the suitability of the proposed method to monitor chlorophenols in complex samples. 2,4,5-TCP was detected at concentrations close to its limits of detection in effluents coming from an oil refinery.  相似文献   

16.
A sensitive and reliable liquid chromatographic-tandem mass spectrometric method for enantiomeric determination of five chiral azole antifungals (econazole, ketoconazole, miconazole, tebuconazole, and propiconazole) in wastewater and sludge has been established and validated. An isotope-labeled internal standard was used for quantification. Recovery of the individual enantiomers was usually in the range of 77-102 % for wastewater and 71-95 % for sludge, with relative standard deviations within 20 %. No significant difference (p>0.05) was observed between recovery of pairs of enantiomers of the chiral azole antifungals except for those of tebuconazole. Method quantification limits for individual enantiomers were 0.3-10 ng L(-1) and 3-29 ng g(-1) dry weight for wastewater and sludge, respectively. The method was used to investigate the enantiomeric composition of the azole pharmaceuticals in wastewater and sludge samples from a sewage treatment plant in China. Enantiomers of miconazole, ketoconazole, and econazole were widely detected. The results showed that the azole antifungals in wastewater and sludge were generally racemic or marginally non-racemic. The method is a useful tool for investigation of the enantiomeric occurrence, behavior, and fate of the chiral azole antifungals in the environment.  相似文献   

17.
A gas chromatography–tandem mass spectrometry (GC–MS/MS) method has been developed for the determination of selected pharmaceutical residues (carbamazepine, salicylic acid, clofibric acid, ibuprofen, 2-hydroxy-ibuprofen, fenoprofen, naproxen, ketoprofen, diclofenac, and triclosan) in sewage influent and roughly primary-treated effluent. The method involved solid-phase extraction (SPE) with polymeric sorbents, and two SPE cartridges were compared for the extraction and elution of the targeted compounds in complex matrices. A successful chemical derivatization of carbamazepine and acidic compounds using N,O-bis(trimethylsilyl) trifluoroacetamide +10% trimethylchlorosilane is also described. The quantification limits of the analytical procedure ranged from 30 to 60?ng?L?1 for 500?mL of wastewater. The best recovery rates (72–102%) in spiked effluent samples were obtained with Phenomenex Strata-X? cartridges. Detection limits (S/N?=?3) were estimated at between 1 and 18?ng?L?1. The reported GC–MS/MS method significantly reduces the strong matrix effects encountered with more expensive LC-MS/MS techniques. Application of the developed method showed that most selected analytes were detected at concentrations ranging from low µg?L?1 to trace level ng?L?1 in Montreal's wastewater treatment plant effluent and influent, as well as in the receiving waters at more than 8?km downstream of the effluent outfall. The rugged alternative analytical method is suitable for the simultaneous analysis of carbamazepine and pharmaceutical acidic residues in wastewater samples from influents and effluents that have undergone rough primary treatment.  相似文献   

18.
A method based on solid-phase microextraction (SPME) followed by on-fiber derivatization and gas chromatography–mass spectrometry detection (GC–MS) for determination of phenol in air was developed. Three different types of SPME fibers, polar and non-polar poly(dimethylsiloxane) (PDMS) and polyethylene glycol (PEG) were synthesized using sol–gel technology and their feasibility to the sampling of phenol were investigated. Different derivatization reagents for post on-fiber derivatization of phenol were studied. Important parameters influencing the extraction and derivatization process such as type of fiber coating, type and volume of derivatizing reagent, derivatization time and temperature, extraction time, and desorption conditions were investigated and optimized. The developed method is rapid, simple, easy and inexpensive and offers high sensitivity and reproducibility. Under the optimized conditions, the detection limit of the method was 5 ng L−1 using selected ion monitoring (SIM) mode. The inter-day and intra-day precisions of the developed method under optimized conditions were below 10%, and the method shows linearity in the range of 20 ng L−1 to 500 μg L−1with the correlation coefficient of >0.99. The optimized method was applied to the sampling of phenol from some biologics production areas. The compared results obtained using current and standard methods were shown to be satisfactory.  相似文献   

19.
Benzene is classified as a Group I carcinogen by the International Agency for Research on Cancer (IARC). The risk assessment for benzene can be performed by monitoring environmental and occupational air, as well as biological monitoring through biomarkers. The present work developed and validated methods for benzene analysis by GC/MS using SPME as the sampling technique for ambient air and breath. The results of the analysis of air in parks and avenues demonstrated a significant difference, with average values of 4.05 and 18.26 μg m−3, respectively, for benzene. Sampling of air in the occupational environment furnished an average of 3.41 and 39.81 μg m−3. Moreover, the correlations between ambient air and expired air showed a significant tendency to linearity (R 2 = 0.850 and R 2 = 0.879). The results obtained for two groups of employees (31.91 and 72.62 μg m−3) presented the same trend as that from the analysis of environmental air.  相似文献   

20.
An improved selectivity method for the simultaneous determination of four benzotriazoles (benzotriazole, 4-methylbenzotriazole, 5-methylbenzotriazole, and 5,6-dimethyl-1H-benzotriazole) and six benzothiazoles (benzothiazole, 2-hydroxybenzothiazole, 2-benzothiazolamine, mercaptobenzothiazole, 2-methylbenzothiazole, and 2-methylthiobenzothiazole) in aqueous matrices has been developed. Under optimal conditions, analytes are concentrated using a MAX solid-phase extraction (SPE) cartridge, based on divinylbenzene-N-vinylpyrrolidone functionalized with quaternary amine groups, which allows reversed-phase interactions in combination with ionic exchange. Selected compounds are recovered with methanol–acetone 7:3 (v/v) whereas acidic interferences remained attached to the sorbent, and as determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), LOQs for surface, urban and industrial wastewater are in the range of 0.002–0.29 ng/mL. Figures of merit of the method revealed good precision (RSD% <12%), linearity (R 2 > 0.99) and accuracy (%R = 80–100%) for surface waters and effluents allowing direct external standard quantification. For more complex samples, such as urban and industrial raw wastewater, either the standard addition method or pseudo-external standard calibration using matrix matched standards are recommended. Analysis of different real samples, surface, urban wastewater and, for the first time, metal industry wastewater, reflected concentrations up to 310 ng/mL. The methylbenzotriazole isomers ratio was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号