首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrus produced in the southwestern United States is often irrigated with perchlorate-contaminated water. This irrigation water includes Colorado River water which is contaminated with perchlorate from a manufacturing plant previously located near the Las Vegas Wash, and ground water from wells in Riverside and San Bernardino counties of California which are affected by a perchlorate plume associated with an aerospace facility once located near Redlands, California. Studies were conducted to evaluate the uptake and distribution of perchlorate in citrus irrigated with contaminated water, and estimate potential human exposure to perchlorate from the various citrus types including lemon (Citrus limon), grapefruit (Citrus paradise), and orange (Citrus sinensis) produced in the region. Perchlorate concentrations ranged from less than 2-9 μg/L for Colorado River water and from below detection to approximately 18 μg/L for water samples from wells used to irrigate citrus. Destructive sampling of lemon trees produced with Colorado River water show perchlorate concentrations larger in the leaves (1835 μg/kg dry weight (dw)) followed by the fruit (128 μg/kg dw). Mean perchlorate concentrations in roots, trunk, and branches were all less than 30 μg/kg dw. Fruit pulp analyzed in the survey show perchlorate concentrations ranged from below detection limit to 38 μg/kg fresh weight (fw), and were related to the perchlorate concentration of irrigation water. Mean hypothetical exposures (μg/person/day) of children and adults from lemons (0.005 and 0.009), grapefruit (0.03 and 0.24), and oranges (0.51 and 1.20) were estimated. These data show that potential perchlorate exposures from citrus in the southwestern United States are negligible relative to the reference dose recommended by the National Academy of Sciences.  相似文献   

2.
The development of a rapid method for the determination of perchlorate in rain and drinking waters is presented. In the optimised method, an on-line preconcentration technique was employed utilising a 10 mm × 4.6 mm Phenomenex Onyx monolithic guard cartridge coated with (N-dodecyl-N,N-dimethylammonio)undecanoate for selective preconcentration, with subsequent elution into a fixed volume injection loop (‘heart-cut’ of the concentrator column eluate) and separation using an IonPac AS16 (250 mm × 2 mm) anion exchange column and a potassium hydroxide concentration gradient. Off-line optimisation studies showed that the coated monolith displayed near quantitative recovery up to 50 μg/L perchlorate level from standards prepared in reagent water. On-line preconcentration of perchlorate obtained detection limits down to 56 ng/L in reagent water, between 70 and 80 ng/L in rainwater samples and 2.5 μg/L in non-pretreated drinking water. After an additional sample sulphate/carbonate removal step, low ng/L perchlorate concentrations could also be observed in drinking water. The complete on-line method exhibited reproducibility for n = 10 replicate runs of R.S.D. ≤ 3% for peak height/area and R.S.D. = 0.08% for retention time. The optimised method, of 20 min total duration, was applied to the determination of perchlorate by standard addition in 10 rainwater samples and one drinking water sample. Concentrations of perchlorate present ranged from below the detection limit for four rainwater samples, with another three samples showing perchlorate present at between 70 and 100 ng/L, and one sample showing perchlorate present at 2.8 μg/L. Levels of 1.1 μg/L in the drinking water sample were also recorded.  相似文献   

3.
To assess the potential risks associated with the environmental exposure of β-lactam antibiotics (BLAs), the monitoring of the occurrence, distribution, and fate of these emerging contaminants in the environment is required. Herein, we demonstrate a molecularly imprinted solid-phase extraction (MISPE) method for selective and reliable screening of trace BLAs in river and tap water. By developing a low-temperature photopolymerization, highly selective molecularly imprinted polymers (MIPs) for five BLAs (penicillin G, amoxicillin, ampicillin, nafcillin and mezlocillin) were synthesized. Nafcillin was chosen as a pseudo template to make the MIP sorbent (Nafc-MIP), which was used in pseudo-template MISPE for preconcentration of the other four BLAs from river and tap water. The application of pseudo-template MISPE overcomes the template bleeding, which significantly elevates the sample background and restricts the application of MIP for detection of the target BLA below 2 μg/L. The average recoveries of BLAs are in the range of 60–90% when Nafc-MIP was adopted as the selective MISPE sorbent. The developed method was validated, and applied to the screening of trace β-lactam antibiotics in river and tap water. The linearity of the calibration curve for each BLA was observed over the range of 0.1–20 μg/L (r > 0.998). The β-lactam antibiotics were found within the range of 0–9.56 μg/L in river water at the downstream of antibiotics manufacturers, and none were detected in the tap water.  相似文献   

4.
A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML2). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5 × 10−2 mol L−1, extraction temperature 40 °C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 μL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 μL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 μg L−1, relative standard deviation (RSD) 5.5% and the working linear range 2-30 μg L−1.  相似文献   

5.
A screening method was developed to discriminate among water samples contaminated or uncontaminated with N-nitrosamines in order to reduce the use of expensive instruments such as chromatographs. The system is based on the preconcentration of the analytes onto a sorbent column, elution and derivatization to form nitrite, then formation of a coloured product (Griess reaction) and photometric detection. The limit of detection achieved for 100 ml of sample volume was 0.2 μg/l and the sample frequency 3 h−1. The reliability of the proposed method of the N-nitrosamines was established at five concentrations (between 0.5 and 3 times the limit of detection). For a level concentration of 0.6 μg/l (three times the limit of detection), the percentage of false negatives is 0%. The method was applied to the screening of several water samples (river, pond, well, tap and waste) with a positive response only for waste water samples.  相似文献   

6.
A chemiluminescence one-shot sensor for hydrogen peroxide is described. It is prepared by immobilization of cobalt chloride and sodium lauryl sulphate in hydroxyethyl cellulose matrix cast on a microscope cover glass. Luminol, sodium phosphate and the sample are mixed before use and applied on the membrane by a micropipette. The calibration graph is linear in the range 20-1600 μg/L, and the detection limit of the method (3σ) is 9 μg/L. A relative standard deviation of 4.5% was obtained for 100 μg/L H2O2 (n = 11). The sensor has been applied successfully to the determination of hydrogen peroxide in rainwater.  相似文献   

7.
A new, fast and efficient multiple reaction monitoring (MRM) high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the determination of cyclopiazonic acid (CPA) in mixed feed, wheat, peanuts and rice is presented. The analytical methodology involves sample extraction with an alkaline methanol–water mixture, defatting with hexane and quantification using HPLC–MS/MS without further treatment of sample extracts. Reversed-phase liquid chromatography using a C18 stationary phase coupled to negative mode electrospray triple quadrupole tandem mass spectrometry was applied. The limit of detection was 5 μg/kg while the limit of quantification was 20 μg/kg in the matrices investigated. The detector response was found to be linear over the range 25–250 μg/kg in feed and 25–500 μg/kg in wheat, peanuts and rice. The mean overall recoveries (n = 18) of CPA varied from 79% to 114% in the range of concentrations studied over a period of 4 months. Mean recoveries (n = 3 or 6) of CPA in wheat, peanuts and rice varied from 70% to 111%, 77% to 116% and 69% to 92%, respectively. The method was successfully applied to the analysis of feed and rice samples artificially infected with the fungal strain Penicillium commune, where the toxin was found at different levels.  相似文献   

8.
An ion-pairing reversed-phase liquid chromatography–mass spectrometry (IP-RP-LC–MS) was developed for the determination of nucleotides, nucleosides and their transformation products in Cordyceps. Perfluorinated carboxylic acid, namely pentadecafluorooctanoic acid (PDFOA, 0.25 mM), was used as volatile ion-paring agent and a reversed-phase column (Agilent ZORBAX SB-Aq column) was used for the separation of three nucleotides namely uridine-5′-monophosphate (UMP, 0.638–10.200 μg/mL), adenosine-5′-monophosphate (AMP, 0.24–7.80 μg/mL) and guanosine-5′-monophosphate (GMP, 0.42–13.50 μg/mL), seven nucleosides including adenosine (0.55–8.85 μg/mL), guanosine (0.42–6.75 μg/mL), uridine (0.33–10.50 μg/mL), inosine (0.21–6.60 μg/mL), cytidine (0.48–15.30 μg/mL), thymidine (0.20–6.30 μg/mL) and cordycepin (0.09–1.50 μg/mL), as well as six nucleobases, adenine (0.22–6.90 μg/mL), guanine (0.26–4.20 μg/mL), uracil (0.38–12.15 μg/mL), hypoxanthine (0.13–4.20 μg/mL), cytosine (0.39–12.45 μg/mL) and thymine (0.26–8.25 μg/mL) with 5-chlorocytosine arabinoside as the internal standard. The overall LODs and LOQs were between 0.01–0.16 μg/mL and 0.04–0.41 μg/mL for the 16 analytes, respectively. The contents of 16 investigated compounds in natural and cultured Cordyceps were also determined and compared after validation of the developed IP-RP-LC-MS method. The transformations of nucleotides and nucleosides in Cordyceps were evaluated based on the quantification of the investigated compounds in three extracts, including boiling water extraction (BWE), 24 h ambient temperature water immersion (ATWE) and 56 h ATWE extracts. Two transformation pathways including UMP → uridine → uracil and GMP → guanosine → guanine were proposed in both natural Cordyceps sinensis and cultured Cordyceps militaris. The pathway of AMP → adenosine → inosine → hypoxanthine was proposed in natural C. sinensis, while AMP → adenosine → adenine in cultured C. militaris. However, the transformation of nucleotides and nucleosides was not found in commercial cultured C. sinensis.  相似文献   

9.
The solid phase microextraction (SPME) technique with on-fiber derivatization was evaluated for the analysis of alkylphenols (APs), including 4-tert-octylphenol (4-t-OP), technical nonylphenol isomers (t-NPs) and 4-nonylphenol (4-NP), in water. The 85 μm polyacrylate (PA) fiber was used and a two-step sample preparation procedure was established. In the first step, water sample of 2 mL was placed in a 4 mL PTFE-capped glass vial. Headspace extraction of APs in water was then performed under 65 °C for 30 min with 800 rpm magnetic stirring and the addition of 5% of sodium chloride. In the second step, the SPME fiber was placed in another 4 mL vial, which contained 100 μL of N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) with 1% tert-butyl-dimethylchlorosilane (TBDMCS). Headspace extraction of MTBSTFA and on-fiber derivatization with APs were performed at 45 °C for 10 min. Gas chromatography/mass spectrometry (GC/MS) was used for the analysis of derivatives formed on-fiber. The adsorption-time profiles were also examined. The precision, accuracy and method detection limits (MDLs) for the analysis of all the APs were evaluated with spiked water samples, including detergent water, chlorinated tap water, and lake water. The relative standard deviations were all less than 10% and the accuracies were 100 ± 15%. With 2 mL of water sample, MDLs were in the range of 1.58-3.85 ng L−1. Compared with other techniques, the study described here provided a simple, fast and reliable method for the analysis of APs in water.  相似文献   

10.
Xu X  Ye H  Wang W  Yu L  Chen G 《Talanta》2006,68(3):759-764
Four flavonoids (rutin, hyperoside, quercitrin and quercetin) in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. were determined by capillary electrophoresis with wall-jet amperometric detection. The working electrode was a 500 μm diameter carbon disc electrode and the detection potential was +0.95 V (versus Ag/AgCl). Effects of several important factors, such as the running buffer and its corresponding pH and concentration, separation voltage, injection time were investigated to acquire the optimum conditions for separation of these four flavonoids. Baseline separation for the four flavonoids was obtained within 21 min in a 60 cm length capillary at a separation voltage of 15 kV with a 60 mmoL/L Na2B4O7-120 mmoL/L NaH2PO4 buffer (pH 8.8) as running buffer. The relationship between peak currents and analyte concentrations was linear over about two orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.05 μg/mL for all analytes. This method was applied for the determination of the above four flavonoids in H. cordata Thunb. and S. chinensis (Lour.) Bail. with simple extraction procedures, and the assay results were satisfactory.  相似文献   

11.
Pre-concentration and determination of 8 phenolic compounds in water samples has been achieved by in situ derivatization and using a new liquid–liquid microextraction coupled GC–MS system. Microextraction efficiency factors have been investigated and optimized: 9 μL 1-undecanol microdrop exposed for 15 min floated on surface of a 10 mL water sample at 55 °C, stirred at 1200 rpm, low pH level and saturated salt conditions. Chromatographic problems associated with free phenols have been overcome by simultaneous in situ derivatization utilizing 40 μL of acetic anhydride and 0.5% (w/v) K2CO3. Under the selected conditions, pre-concentration factor of 235–1174, limit of detection of 0.005–0.68 μg/L (S/N = 3) and linearity range of 0.02–300 μg/L have been obtained. A reasonable repeatability (RSD ≤ 10.4%, n = 5) with satisfactory linearity (0.9995 ≥ r2 ≥ 0.9975) of results illustrated a good performance of the present method. The relative recovery of different natural water samples was higher than 84%.  相似文献   

12.
Zhou Q  Gao Y  Xie G 《Talanta》2011,85(3):1598-1602
Present study described a simple, sensitive, and viable method for the determination of bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol in water samples using temperature-controlled ionic liquid dispersive liquid-phase microextraction coupled to high performance liquid chromatography-fluorescence detector. In this experiment, 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) was used as the extraction solvent, and bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol were selected as the model analytes. Parameters affecting the extraction efficiency such as the volume of [C8MIM][PF6], dissolving temperature, extraction time, sample pH, centrifuging time and salting-out effect have been investigated in detail. Under the optimized conditions, good linear relationship was found in the concentration range of 1.0-100 μg L−1 for BPA, 1.5-150 μg L−1 for 4-NP, and 3-300 μg L−1 for 4-OP, respectively. Limits of detection (LOD, S/N = 3) were in the range of 0.23-0.48 μg L−1. Intra day and inter day precisions (RSDs, n = 6) were in the range of 4.6-5.5% and 8.5-13.3%, respectively. This method has been also successfully applied to analyze the real water samples at two different spiked concentrations and excellent results were obtained.  相似文献   

13.
Zuo Y  Wang C  Van T 《Talanta》2006,70(2):281-285
A simple, fast, sensitive and accurate reversed-phase ion-pair HPLC method for simultaneous determination of nitrite and nitrate in atmospheric liquids and lake waters has been developed. Separations were accomplished in less than 10 min using a reversed-phase C18 column (150 mm × 2.00 mm i.d., 5 μm particle size) with a mobile phase containing 83% 3.0 mM ion-interaction reagent tetrabutylammonium hydroxide (TBA-OH) and 2.0 mM sodium phosphate buffer at pH 3.9 and 17% acetonitrile (flow rate, 0.4 mL/min). UV light absorption responses at 205 nm were linear over a wide concentration range from 100 μg/mL to the detection limits of 10 μg/L for nitrite and 5 μg/L nitrate. Quantitation was carried out by the peak area method. The relative standard deviation for the analysis of nitrite and nitrate was less than 3.0%. This method was applied for the simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples collected in southeast Massachusetts. Nitrate was found being present at 4.79-5.99 μg/mL in dew, 1.20-2.63 μg/mL in rain, 0.32-0.60 μg/mL in snow and 0.12-0.23 μg/mL in lake water. Nitrite was only a minor species in dew (0.62-0.83 μg/mL), rain (<0.005-0.14 μg/mL), snow (0.021-0.032 μg/mL) and lake water (0.12-0.16 μg/mL). High levels of nitrite and nitrate observed in dew water droplets may constitute an important source of hydroxyl radicals in the sunny early morning.  相似文献   

14.
Two new dimeric carbazole alkaloids, clausenawallines A and B, were isolated from the roots of Clausena wallichii. Their structures were elucidated by spectroscopic methods. Clausenawalline A was evaluated for its biological activities [anti-malaria (IC50 2.46 μg/mL), anti-TB (MIC 12.50 μg/mL)] and cytotoxicity against three human cancer cell lines [KB (IC50 7.87 μg/mL), MCF7 (IC50 25.43 μg/mL), and NCI-H187 (IC50 10.97 μg/mL)].  相似文献   

15.
A simple, rapid and sensitive procedure using solid phase extraction and capillary zone electrophoresis for the determination of propranolol (a beta-blocker) and one of its metabolites, N-desisopropylpropranolol, has been developed and validated. The optimum separation of both analytes was obtained in a 37 cm × 75 μm fused silica capillary using 20 mmol/L phosphate buffer (pH 2.2) as electrolyte, at 25 kV and 30 °C, and hydrodynamic injection for 5 s. Prior to the electrophoretic separation, the samples were cleaned up and concentrated using a C18 cartridge and then, eluted with methanol, allowing a concentration factor of 30.Good results were obtained in terms of precision, accuracy and linearity. The limits of detection were 28 and 30 μg/L for N-desisopropylpropranolol and propranolol, respectively. Additionally, a robustness test of the method was carried out using the Plackett-Burman fractional factorial model with a matrix of 15 experiments.The presented method has been applied to the determination of both compounds in human urine.  相似文献   

16.
A new method for the measurement of N-nitrosamines in part-per-trillion concentrations from water samples without preconcentration steps has been developed. This method is based on online UV irradiation after high-performance liquid chromatographic separation and subsequent luminol chemiluminescence detection without addition of an oxidant. It was confirmed that N-nitrosamines in basic aqueous solution were transformed to peroxynitrite by UV irradiation. The detection limits for this method were 1.5 ng/L, 2.9 ng/L, 3.0 ng/L, and 2.7 ng/L for N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosomethylethylamine, and N-nitrosopyrrolidine, respectively, at a signal-to-noise ratio of 3. The calibration graphs were linear in the range of 5–1000 ng/L for these N-nitrosamines. This method was used for the determination of N-nitrosamines in tap water, river water, and industrial plant effluent samples. The recoveries of N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosomethylethylamine, and N-nitrosopyrrolidine present in tap water sample at a concentration of 10 ng/L (mean ± standard deviation, n = 4) were (94.8 ± 2.7)%, (102.0 ± 6.9)%, (99.3 ± 3.9)%, and (102.8 ± 2.5)%, respectively. These results indicate that our proposed method can be applied satisfactorily to the determination of N-nitrosamines in water samples.  相似文献   

17.
A new analytical procedure was developed using headspace solid-phase microextraction (HS-SPME) for the simultaneous determination of sorbic and benzoic acids in beverages. The sample were processed depending on their nature, either only diluted with water, or treated with a NaOH solution and filtered through a 0.45-μm membrane filter. The samples were heated in a vial in the presence of sulfuric acid and anhydrous sodium sulfate and the analytes were collected from the headspace by using a 65-μm polydimethylsiloxane-divinylbenzene (PDMS-DVB) coated fiber and determined by gas chromatography with flame ionization detector (GC-FID). To enhance the sensitivity of HS-SPME, the temperature and time of the extraction and desorption, the acidity and salt concentration of the extraction solution were optimized. Linear range of the analytes was found to be between 0.1 and 20 mg/L with regression coefficients (R2) of 0.9998 for sorbic acid and 0.9980 for benzoic acid. Limits of detection (LOD) were 5.83 μg/L and 11.4 μg/L for sorbic and benzoic acids, respectively. Relative standard deviation (R.S.D.) for six replicate analyses within 3 days (two times/day) was found to be lower than 8.62% at three concentration levels (2, 6, 10 mg/L). Recoveries ranged from 81.20% to 108.1% for real samples. The results demonstrate the suitability of the HS-SPME technique to analyze sorbic and benzoic acids in a variety of beverages.  相似文献   

18.
Xun Zhou 《Talanta》2007,71(4):1541-1545
A simple and rapid method using micellar electrokinetic capillary chromatography (MEKC) was developed for the separation and determination of acrylamide in potato chips at low levels for the first time. The experimental conditions for the separation and quantification of acrylamide were optimized at first. The optimized conditions were: 50 mmol/L Na2B4O7 and 40 mmol/L SDS at pH 10.0, 12 kV applied voltage, 76 cm total length (67 cm effective length) and 75 μm i.d. capillary, 198 nm wavelength, 15 cm high 25 s hydrodynamics sample injection, 20 °C air-cooling. The linear response of acrylamide concentration ranges from 0.5 to 100 μg/mL with high correlation coefficient (r = 0.9986, n = 9). The LOD and LOQ were estimated to be 0.1 and 0.33 μg/mL based on S/N = 3 and 10. The precision values (expressed as R.S.D.) of intra- and inter-day were 0.86-4.35% and 2.61-9.65%, respectively. Recoveries spiked at levels 2, 20, 60 μg/mL ranged between 90.86% and 99.6% with R.S.D. less than 6.5%. Finally, the developed method has been applied to the analysis of real samples and has achieved satisfactory results. All of these indicated that it was a reliable method for the quantification of acrylamide in potato chips.  相似文献   

19.
An on-line flow injection spectrofluorimetric method for the direct determination of aluminium in water samples is described. The method is based on the reaction of aluminium with N-o-vanillidine-2-amino-p-cresol (OVAC) in acidic medium at pH 4.0 to form a water-soluble complex. The excitation and emission wavelengths were 423.0 and 553.0 nm, respectively, at which the OVAC-Al complex gave the maximum fluorescence intensity at pH 4.0 in a 50% methanol-50% water medium at 50 °C. An interference from fluoride ions was minimised by the addition of Be2+. Other ions were found not to interfere at the concentrations likely to be found in natural waters. The proposed methods were validated in terms of linearity, repeatability, detection limit, accuracy and selectivity. Under these conditions, the calibration was linear up to 1000 μg L−1 (r = 0.999). The limit of detection (3σ) for the determination of Al(III) was 0.057 μg L−1 and the precision for multiple determinations of 3 ng mL−1 Al(III) prepared in ultra-pure water was found to be 0.62% (n = 10).The Schiff base ligand could be used to determine ultra-trace aluminium from natural waters. Analysis of environmental certified reference materials showed good agreement with the certified values. The procedure was found to be equally applicable to both freshwater and saline solutions, including seawater.  相似文献   

20.
Interlaboratory studies are decisive tools to help the validation of a specific analytical methodology or to assess the reproducibility of the use of different methods to analyze a given compound or compounds in certain sample matrices. In this work, homogeneous samples of two white wines (“White Wine” and “White Liqueur Wine”) and one red wine (“Red Fortified Wine”) from Portugal with different production techniques and characteristics, namely in alcohol strength (10.5%, 16.0% and 19.0% ethanolic content, respectively), were analyzed for their contents in ochratoxin A (OTA), a mycotoxin generated from fungal contamination. White Liqueur Wine was naturally contaminated, whereas the other two wine type were spiked with ethanolic OTA solutions. The participation of 24 laboratories from 17 countries of five continents was ensured for this study. Although with no restrictions in terms of analytical methodology to employ, 75% of the laboratories resorted to immunoaffinity columns clean-up followed by high performance liquid chromatography with fluorescence detection (HPLC-FD), most of them in accordance with the European Standard EN 14133. For White Wine samples, the general mean OTA concentration was 1.96 μg/l (two outliers) with interlaboratorial standard deviation (sL) of 0.53 μg/l; for White Liqueur Wine, mean of 1.59 μg/l (one outlier), with sL = 0.59 μg/l; and for Red Fortified Wine, mean of 2.73 μg/l (no outliers), with sL = 0.96 μg/l. Outliers were determined by Cochran and Grubbs tests. The Horrat index, recommended by the Association of Official Analytical Chemists (AOAC) for the quality assurance of the collaborative study was, on average, 1.7. This study proved that OTA determination in wines is reproducible, regardless of the methodology employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号