首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First-principles calculations are performed to study the adsorption of Ag at Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0 0 0 1?) surfaces as a function of Ag coverage. Our results reveal that Ag adsorption at Cd-terminated (0 0 0 1) has a large binging energy than at S-terminated (0 0 0 1?) surface. For Ag adsorption at Cd-terminated (0 0 0 1) surface, T4 structure is more favorable and the Ag-Cd bond posses an ionic-like character. While for Ag adsorption at S-terminated (0 0 0 1?) surface, the H3 structure is most stable and the bonding between Ag-S is covalent. It is found that the magnitude and the sign of surface dipole moment are partly determined by the difference between the electronegativities of Ag and the host atom bonding with Ag. The adsorption energy changes as a function of Ag coverage. In addition, related properties of Ag cluster adsorption at Cd-terminated (0 0 0 1) surface are also discussed.  相似文献   

2.
Theoretical studies on the dynamics of the exchange reaction H′ + BrH (ν = 0, j = 0) → H′Br + H are performed on potential energy surface (PES) (Kurosaki et al., private communication) for the ground state using the quasi-classical trajectory method. The cross sections, computed at the collision energies (Ec) of 0.5-2.0 eV, are in good agreement with the earlier quantum wave packet results. The rotational, vibrational, and translational fractions in the total energy and the vibrational distribution for the product molecule are calculated at the same collision-energy range. The results support the repulsive character of the PES. In the considered Ec range, it has little chance to occur in an indirect reaction. The alignment and orientation of the product H′Br are investigated in detail with stereodynamics. The results show that Ec can effect on both the alignment and the orientation of product.  相似文献   

3.
In this paper, we present the results of our study of the phase equilibria for two quaternary systems: water + 1-propanol/2-propanol + potassium chloride (KCl) + cesium chloride (CsCl) at 298.1 ± 0.1 K. We also produced the binodal curves and tie-lines at different KCl/CsCl mass-fraction ratios, and produced integrated phase diagrams for the quaternary systems. We also discuss the solvation abilities of KCl and CsCl, and the effect of the polarity of the organic solvent on the liquid–liquid equilibrium. We compared the experimental tie-lines derived for the quaternary systems with values predicated by modifying the Eisen–Joffe equation. The model produced satisfactory results.  相似文献   

4.
Isothermal vapor–liquid equilibria at 333.15 K, 343.15 K and 353.15 K for three binary mixtures of o-xylene, m-xylene and p-xylene individually mixed with N-methylformamide (NMF), have been obtained at pressures ranged from 0 kPa to 101.3 kPa over the whole composition range. The Wilson, NRTL and UNIQUAC activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Peng–Robinson equation of state in calculating the vapor mole fraction. Liquid and vapor densities were measured by using two vibrating tube densitometers. The excess molar volumes of the liquid phase were also determined. Three systems of o-xylene + NMF, m-xylene + NMF and p-xylene + NMF mixtures present large positive deviations from the ideal solution and belong to endothermic mixings because their excess Gibbs energies are positive. Temperature dependent intermolecular parameters in the NRTL model correlation were finally obtained in this study.  相似文献   

5.
The experimental density and speed of ultrasound measurements in connection with literature data have been measured for pure N,N-dimethylformamide (DMF), methanol and their binary mixtures over the whole miscibility range at different temperatures 303, 308, 313, 318 and 323 K. These parameters were used to determine the adiabatic compressibility, intermolecular free length, molar compressibility, molar sound velocity, acoustic impedance, relaxation strength and their excess values. The variation of these parameters with composition of mixture indicates the nature and extent of interaction between unlike molecules. The non-ideal behavior of the system studied was explained on the basis of the dipole-induced dipole interactions and hydrogen bonding. The complex formation through intermolecular hydrogen bonding was confirmed from the recorded FTIR spectra. Available thermal energy breaks the bonds between the associated molecules into their respective monomers on increasing the temperature.  相似文献   

6.
Isothermal vapor–liquid equilibrium (VLE) for tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K was measured with a recirculation still. Liquid- and vapor-phase compositions were determined with gas chromatography. All systems exhibit a small positive deviation from Raoult's law and show nearly ideal behavior. All VLE measurements passed the point test used. The experimental results were correlated with the Wilson model and compared with COSMO-SAC predictive models. COSMO-SAC predictions show a slight negative deviation from Raoult's law for all systems measured. Raoult's law can be used to describe all systems studied. The activity coefficients at infinite dilution are presented.  相似文献   

7.
In this work, the reaction O(1D) + H2 → OH + H has been theoretically studied using the quasiclassical trajectory (QCT) method developed by Han and co-workers. All the quasiclassical trajectory calculations are performed on the DK (Dobbyn and Knowles) potential energy surface (PES). The vector correlation information on the reaction O(1D) + H2 → OH + H has been obtained. It has been demonstrated that the product alignment is sensitive to the reactant vibrational quantum number (v) at collision energy of 19 kcal/mol. Moreover, with increasing the value of v, backward scattering becomes weaker and forward scattering becomes stronger.  相似文献   

8.
9.
Liquid–liquid equilibrium data for the ternary system water + 1-propanol + 1-pentanol have been determined experimentally at 298.15 and 323.15 K using “static–analytic” apparatus involving ROLSI™ samplers. The experimental data are correlated considering both NRTL and UNIQUAC activity coefficient models. The results obtained show the ability of both models for the determination of liquid–liquid equilibrium data of the studied system. The reliability of the experimental tie-line data is determined through the Othmer–Tobias and Bachman equations.  相似文献   

10.
A new equation of state (EOS) for square-well chain molecules and their mixtures with variable well-width range (SWCF-VR-EOS) has been developed based on the sticky-point model for chemical association. Two important modifications have been made. Firstly, a new dispersion contribution to the Helmholtz function of monomers due to square-well potential with variable well-width range of 1.1 ≤ λ ≤ 3 was established by combining the second-order perturbation theory and Chiew's PY2 approximation of the integral equation. Secondly, the contribution of chain formation to the Helmholtz function is divided into two parts: One is from the hard sphere, and the other is from the effect of square-well potential described via the nearest-neighbor and next-to-nearest-neighbor residual cavity correlation functions (CCFs). The predicted compressibility factors and vapor–liquid coexistence curves for square-well fluids as well as for their mixtures are in good agreement with simulations. The new EOS has been applied to real non-associating fluids and the corresponding mixtures by adopting one-fluid mixing rule. The pVT and vapor–liquid equilibria (VLE) can be correlated satisfactorily. The model parameters for some homologous compounds are found to be linear with the molar mass indicating that the pVT and VLE of those homologous compounds can be predicted even if no accurate data are available.  相似文献   

11.
The vapor–liquid equilibria for methanol + glycerol and ethanol + glycerol systems were measured by a flow method at 493–573 K. The pressure conditions focused in this work were 3.03–11.02 MPa for methanol + glycerol system and 2.27–8.78 MPa for ethanol + glycerol system. The mole fractions of alcohol in vapor phase are close to unity at the pressures below 7.0 MPa for both systems. The pressures of liquid saturated lines of the liquid phase for methanol + glycerol and ethanol + glycerol systems are higher than that for the mixtures containing alcohol and biodiesel compound, methyl laurate or ethyl laurate.  相似文献   

12.
Liquid–liquid equilibrium (LLE) data for three ternary systems consisting of {n-heptane or n-hexane or cyclohexane (1) + toluene (2) + γ-butyrolactone (3)} were measured at 298.2 K and atmospheric pressure. The reliability of the experimental tie-line data was verified by using the Othmer–Tobias correlation. Distribution coefficients, separation factors and selectivity were evaluated for the immiscibility region. The experimental tie-line data were correlated by the UNIQUAC equation and also predicted with the UNIFAC model. The calculated results were compared with the experimental data. Better agreement with the experimental data was obtained by the UNIQUAC equation. The UNIFAC model does not provide reasonable correlations.  相似文献   

13.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system tert-amyl methyl ether + ethanol and tert-amyl methyl ether + 2,2,4-trimethylpentane and for ternary system tert-amyl methyl ether + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental vapor–liquid equilibrium data were correlated with GE models (Margules, van Laar, Wilson, NRTL, UNIQUAC) equations. The excess volume and deviations in molar refractivity data are also reported for the same binary and ternary systems at 298.15 K. These data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The experimental ternary excess volume and deviations in molar refractivity data, were also compared with the estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

14.
Liquid–liquid equilibria and tie-lines for the ternary (water + 1-propanol + α-pinene, β-pinene or limonene) and (water + 1-butanol + α-pinene, β-pinene or limonene) mixtures have been measured at T = 298.15 K. The experimental ternary liquid–liquid equilibrium data have been successfully represented using the additional ternary parameters as well as the binary parameters in terms of the extended and modified UNIQUAC models.  相似文献   

15.
Experimental liquid–liquid equilibrium (LLE) of the water–acetic acid–sec-butyl acetate ternary system was investigated at 298.15, 303.15, 308.15 and 313.15 K and at atmospheric pressure. Separation factors were also evaluated for the immiscibility region. The NRTL and UNIQUAC models were applied to fit the experimental data for the ternary system. The binary interaction parameters obtained from both models were found to be successfully correlated with the equilibrium compositions. The UNIFAC group contribution method was employed to predict the observed ternary LLE data. It was found that four types of the UNIFAC model (UNIFAC, UNIFAC-LL, UNIFAC-DMD, and UNIFAC-LBY) did not provide a good prediction of the LLE data for this ternary system.  相似文献   

16.
This work reports liquid–liquid equilibrium (LLE) results for the ternary systems {cyclooctane + benzene + 1-ethyl-3-methylpyridinium ethylsulfate}, {cyclooctane + toluene + 1-ethyl-3-methylpyridinium ethylsulfate}, and {cyclooctane + ethylbenzene + 1-ethyl-3-methylpyridinium ethylsulfate} at T = 298.15 K and under atmospheric pressure. The selectivity, percent removal of aromatic, and distribution coefficient ratio, derived from the tie-line data, were calculated to determine if this ionic liquid is a good solvent for the extraction of aromatics from cyclooctane. The phase diagrams for the ternary systems are shown, and the tie-lines correlated with the NRTL model have been compared with the experimental data. The consistency of the experimental LLE data was ascertained using the Othmer–Tobias and Hand equations. No data for mixtures presented here have been found in the literature.  相似文献   

17.
Isothermal vapor–liquid equilibrium (VLE) for tetrahydrothiophene + 2,2,4-trimethylpentane and tetrahydrothiophene + 2,4,4-trimethyl-1-pentene at 358.15 and 368.15 K were measured with a circulation still. All systems studied exhibit positive deviation from Raoult's law. No azeotropic behavior was found in all systems at the measured temperatures. The experimental results were correlated with the Wilson model and compared to COSMO-SAC predictive model. Analyses of liquid and vapor phase composition were determined with gas chromatography. All VLE measurements passed the three thermodynamic consistency tests used. The activity coefficients at infinite dilution are also presented.  相似文献   

18.
19.
Vapor–liquid equilibrium data for the difluoromethane (R32) + pentafluoroethane (R125) + propane (R290) ternary mixture were measured at 5 isotherms between 263.15 K and 323.15 K. The measurement was carried out using a circulation-type apparatus recently developed, which was validated with binary mixtures. With binary interaction parameters obtained for the three corresponding binary mixtures, VLE modeling and prediction were performed for the ternary mixture using the Peng–Robinson equation of state with the classical mixing rules and MHV1 mixing rules. Hou's group contribution model for VLE of new refrigerant mixtures was further tested with the experimental data for the ternary system. The predicted pressure and vapor phase composition were compared with experimental ones.  相似文献   

20.
Isobaric vapor–liquid equilibrium (VLE) data for water + n-propanol + n-butanol ternary system have been extensively measured at 99.2 kPa using a recirculating still. The experimental data were then correlated using the extended UNIQUAC model, in which the binary interaction energy parameters between the three components were obtained through a simplex fitting method. The results showed that the calculated data by the extended UNIQUAC model using the same interaction energy parameters agree well with both the experimental data and the literature data. It demonstrated that the experimental data are very consistent with the literature data; and the extended UNIQUAC model is reliable to predict the VLE of the ternary system using the obtained interaction energy parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号