共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Zhou J Ogle JW Fan Y Banphavichit V Zhu Y Burgess K 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(25):7162-7170
Asymmetric hydrogenations of monoenes and dienes were performed to obtain terminal deoxypolyketide fragments A and the corresponding internal chirons B and C. The chiral N-heterocyclic carbene catalyst 1 was used throughout. Modest selectivities for hydrogenations of simple monoenes relayed into high selectivities for preparations of the terminal deoxypolyketide fragments in which either two hydrogenations or one and an optically pure starting material were used. Curiously, the face selectivities for hydrogenation of alpha,beta-unsaturated esters were consistently opposite to those that had been observed for styrene and stilbene derivatives in previous work, and to closely related allylic alcohol and ether derivatives in this work. Plausible mechanisms for this differing behavior were deduced by using DFT calculations. It appears that the origin of the unusual stereoselectivity for the ester derivatives is transient metal-coordination of the ester carbonyl whereas there is no evidence that the allylic alcohol or ethers coordinate. The routes developed to alpha,omega-functionalized internal deoxypolyketide fragments are extremely practical. These begin with the Roche ester being converted into alkene and, in one case, diene derivatives. Catalyst control prevails in the hydrogenations of these substrates, but there is a significant "substrate vector" (a term we used to describe the influence of the substrate on a catalyst-controlled reaction). This is determined by minimization of 1,3-allylic strain and, in some cases, syn pentane interactions. This substrate vector can be constructively paired with the (dominant) catalyst vector by use of the appropriate enantiomer of 1. In the hydrogenation of a diene derivative, two chiral centers could be formed simultaneously with overall 11:1.0 selectivity; this is the first time this has been achieved in any asymmetric synthesis of a deoxypolyketide fragment. Throughout, diastereoselectivities of the crude material in the syntheses of alpha,omega-functionalized internal deoxypolyketide fragments were in excess of 11:1.0 and chromatographically purified samples could be isolated in high yields with dr (dr=diastereomeric ratio) values consistently in excess of 40:1.0. 相似文献
5.
6.
7.
Asymmetric hydrogenation of ketones (AHK) was revolutionized in 1987 and again in 1995 when Ru(CH3COO)2(binap)/HCl and RuCl2(binap)/diamine, respectively, were developed. Since then, the number of reports on Ru-catalyzed AHK has increased exponentially, and the utility of other precious metals (Os, Rh, Ir, and Pd) has also been shown. The utilization of inexpensive base metals (Fe, Co, Ni, and Cu) has been a recent trend. This digest summarizes the key advances in AHK in the past decade by categorizing the chiral ligands into six types: (i) diphosphines, (ii) diphosphines/diamines, (iii) tridentate or tetradentate phosphine amines, (iv) diamines, (v) tetradentate amines, and (vi) tetradentate thioether amines. 相似文献
8.
9.
Martín M Sola E Tejero S Andrés JL Oro LA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(15):4043-4056
Complexes [IrH2(eta6-C6H6)(PiPr3)]BF4 (1) and [IrH2(NCMe)3(PiPr3)]BF4 (2) are catalyst precursors for homogeneous hydrogenation of N-benzylideneaniline under mild conditions. Precursor 1 generates the resting state [IrH2{eta5-(C6H5)NHCH2Ph}(PiPr3)]BF4 (3), while 2 gives rise to a mixture of [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)2(PiPr3)]BF4 (4) and [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)(NH2Ph)(PiPr3)]BF4 (5), in which the aniline ligand is derived from hydrolysis of the imine. The less hindered benzophenone imine forms the catalytically inactive, doubly cyclometalated compound [Ir{HN=CPh(C6H4)-kappaN,C}2(NH2CHPh2)(PiPr3)]BF4 (6). Hydrogenations with precursor 1 are fast and their reaction profiles are strongly dependent on solvent, concentrations, and temperature. Significant induction periods, minimized by addition of the amine hydrogenation product, are commonly observed. The catalytic rate law (THF) is rate = k[1][PhN=CHPh]p(H2). The results of selected stoichiometric reactions of potential catalytic intermediates exclude participation of the cyclometalated compounds [IrH{PhN=CH(C6H4)-kappaN,C}(S)2(PiPr3)]BF4 [S = acetonitrile (4), [D6]acetone (7), [D4]methanol (8)] in catalysis. Reactions between resting state 3 and D2 reveal a selective sequence of deuterium incorporation into the complex which is accelerated by the amine product. Hydrogen bonding among the components of the catalytic reaction was examined by MP2 calculations on model compounds. The calculations allow formulation of an ionic, outer-sphere, bifunctional hydrogenation mechanism comprising 1) amine-assisted oxidative addition of H2 to 3, the result of which is equivalent to heterolytic splitting of dihydrogen, 2) replacement of a hydrogen-bonded amine by imine, and 3) simultaneous H delta+/H delta- transfer to the imine substrate from the NH moiety of an arene-coordinated amine ligand and the metal, respectively. 相似文献
10.
Martín M Sola E Tejero S López JA Oro LA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(15):4057-4068
Treatment of [Ir2(mu-H)(mu-Pz)2H3(NCMe)(PiPr3)2] (1) with one equivalent of HBF4 or [PhNH=CHPh]BF4 affords efficient catalysts for the homogeneous hydrogenation of N-benzylideneaniline. The reaction of 1 with HBF4 leads to the trihydride-dihydrogen complex [Ir2(mu-H)(mu-Pz)2H2(eta2-H2)(NCMe)(PiPr3)2]BF4 (2), which has been characterized by NMR spectroscopy and DFT calculations on a model complex. Complex 2 reacts with imines such as tBuN=CHPh or PhN=CHPh to afford amine complexes [Ir2(mu-H)(mu-Pz)2H2(NCMe){L}(PiPr3)2]BF4 (L = NH(tBu)CH2Ph, 3; NH(Ph)CH2Ph, 4) through a sequence of proton- and hydride-transfer steps. Dihydrogen partially displaces the amine ligand of 4 to form 2; this complements a possible catalytic cycle for the N-benzylideneaniline hydrogenation in which the amine-by-dihydrogen substitution is the turnover-determining step. The rates of ligand substitution in 4 and its analogues with labile ligands other than amine are dependent upon the nature of the leaving ligand and independent on the incoming ligand concentration, in agreement with dissociative substitutions. Water complex [Ir2(mu-H)(mu-Pz)2H2(NCMe)(OH2)(PiPr3)2]BF4 (7) hydrolyzes N-benzylideneaniline, which eventually affords the poor hydrogenation catalyst [Ir2(mu-H)(mu-Pz)2H2(NCMe)(NH2Ph)(PiPr3)2]BF4 (11). The rate law for the catalytic hydrogenation in 1,2-dichloroethane with complex [Ir2(mu-H)(mu-Pz)2H2(OSO2CF3)(NCMe)(PiPr3)2] (8) as catalyst precursor is rate = k[8]{p(H2)}; this is in agreement with the catalytic cycle deduced from the stochiometric experiments. The hydrogenation reaction takes place at a single iridium center of the dinuclear catalyst, although ligand modifications at the neighboring iridium center provoke changes in the hydrogenation rate. Even though this catalyst system is also capable of effectively hydrogenating alkenes, N-benzylideneaniline can be selectively hydrogenated in the presence of simple alkenes. 相似文献
11.
Susmita Bhattacharjee Anil K. Bhowmick B. N. Avasthi 《Journal of polymer science. Part A, Polymer chemistry》1992,30(9):1961-1968
Homogeneous catalytic hydrogenation of olefinic bonds in liquid carboxylated nitrile rubber (L-XNBR) has been carried out selectively in the presence of nitrile and carboxyl functionality using a six-membered cyclopalladate complex of 2-benzoyl pyridine as catalyst. The degree of hydrogenation has been calculated from IR and NMR spectroscopic studies. For example, 68% hydrogenation has been obtained for a sample (containing 0.057 carboxyl equivalent/100 g and 26.1% acrylonitrile) under 2.7 MPa hydrogenation pressure, 0.18 mmol/L catalyst, at 333 K for 1 h in acetone solution. The overall extent of hydrogenation depends on the catalyst-to-double-bond ratio. The kinetics of hydrogenation of L-XNBR has been investigated. The reaction exhibits a pseudo-first order dependence on the concentration of the substrate. The rate constant of the reaction is reduced by the increase in carboxyl and nitrile content of the polymer. The effect of temperature on reaction kinetics has also been studied and the activation energy of hydrogenation of L-XNBR is 20.2 kJ/mol. Intrinsic viscosity of the polymer remains unchanged during the reaction. A significant lowering of the glass transition temperature and improvement of thermal stability have been observed on hydrogenation. © 1992 John Wiley & Sons, Inc. 相似文献
12.
13.
Hashmi AS Haufe P Schmid C Rivas Nass A Frey W 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(20):5376-5382
Different furyl-substituted (Z)-dehydroamino acid derivatives were hydrogenated with the rhodium/Mandyphos(OMe)-system to give enantiomeric excesses between 80 and 98 %. The absolute configuration of the newly formed stereogenic center was determined by anomalous diffraction to be R. These chiral furyl alanines were transferred into 8-hydroxytetrahydroisoquinolines by employing gold-catalyzed arene synthesis as the key step. During the latter reaction sequence, also including either a propargylation or a reduction, a protection of the hydroxy group, and a subsequent propargylation, no racemization of the stereogenic center was observed. With very electron-rich furans, instead of the 8-hydroxytetrahydroquinolines as products, furans anellated to seven-membered rings with exocyclic C-C double bonds are formed under the same reaction conditions. 相似文献
14.
15.
Extending the Scope of the B(C6F5)3‐Catalyzed CN Bond Reduction: Hydrogenation of Oxime Ethers and Hydrazones 下载免费PDF全文
Jens Mohr Digvijay Porwal Dr. Indranil Chatterjee Prof. Dr. Martin Oestreich 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(49):17583-17586
The B(C6F5)3‐catalyzed hydrogenation is applied to aldoxime triisopropylsilyl ethers and hydrazones bearing an easily removable phthaloyl protective group. The C?N reduction of aldehyde‐derived substrates (oxime ethers and hydrazones) is enabled by using 1,4‐dioxane as the solvent known to participate as the Lewis‐basic component in FLP‐type heterolytic dihydrogen splitting. More basic ketone‐derived hydrazones act as Lewis bases themselves in the FLP‐type dihydrogen activation and are therefore successfully hydrogenated in nondonating toluene. The difference in reactivity between aldehyde‐ and ketone‐derived substrates is also reflected in the required catalyst loading and dihydrogen pressure. 相似文献
16.
B(C6F5)3‐Catalyzed Transfer Hydrogenation of Imines and Related Heteroarenes Using Cyclohexa‐1,4‐dienes as a Dihydrogen Source 下载免费PDF全文
Dr. Indranil Chatterjee Prof. Dr. Martin Oestreich 《Angewandte Chemie (International ed. in English)》2015,54(6):1965-1968
The strong boron Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is shown to abstract a hydride from suitably donor‐substituted cyclohexa‐1,4‐dienes, eventually releasing dihydrogen. This process is coupled with the FLP‐type (FLP=frustrated Lewis pair) hydrogenation of imines and nitrogen‐containing heteroarenes that are catalyzed by the same Lewis acid. The net reaction is a B(C6F5)3‐catalyzed, i.e., transition‐metal‐free, transfer hydrogenation using easy‐to‐access cyclohexa‐1,4‐dienes as reducing agents. Competing reaction pathways with or without the involvement of free dihydrogen are discussed. 相似文献
17.
18.
The catalytic homogeneous hydrogenation of electron‐deficient alkenes (nucleophilic hydrogenation) was achieved in the presence of iridium complexes and a base as co‐catalyst. Contrary to hydrogenation of electron‐rich alkenes, which is inactivated by bases, the hydrogenation of the electron‐deficient alkenes turned out to be base activated. Here, we present a more thorough study on the capacities but also limitations of this new reaction mechanism using screenings of the reaction conditions as well as different Ir complexes and substrates. The formation of a catalytically active Ir complex is proposed. The active complex usually attacks a soft electron‐deficient atom, if more than one possibility exists (as shown by density functional theory computations). Additionally, first examples of enantiomeric enrichments in the presence of chiral Ir complexes are presented. The high catalyst load needed and the moderate yields show that the active complex is very unstable under conditions of nucleophilic hydrogenation and is quickly deactivated, which has to be addressed in further studies. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
Jens Mohr Prof. Dr. Martin Oestreich 《Angewandte Chemie (International ed. in English)》2014,53(48):13278-13281
The hydrogenation of oximes and oxime ethers is usually hampered by N? O bond cleavage, hence affording amines rather than hydroxylamines. The boron Lewis acid B(C6F5)3 is found to catalyze the chemoselective hydrogenation of oxime ethers at elevated or even room temperature under 100 bar dihydrogen pressure. The use of the triisopropylsilyl group as a protecting group allows for facile liberation of the free hydroxylamines. 相似文献