首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
《Molecular physics》2012,110(21-22):2773-2779
A preliminary analysis of the 2CH excitation band in C2H2–N2O in the 1.5 µm range (K. Didriche, C. Lauzin, P. Macko, M. Herman and W.J. Lafferty, Chem. Phys. Letters 469, 35 (2009).), only considering 117 low J-, and Ka - vibration-rotation lines, is significantly extended thanks to the analysis of new spectra including very regular series of lines with J/Ka up to 31/15. 1271 b-type lines were assigned. Perturbations are briefly discussed. The rotational temperature in the experiments is estimated to be 20?K and the upper state mean half-time is 1.6?ns for non perturbed levels. The previous analyses of the 2CH + torsion band in C2H2–N2O and in C2H2–CO2 (C. Lauzin, K. Didriche, T. Földes and M. Herman, Mol. Phys. 109, 2105 (2011).), are also extended to include 286 and 234 lines, respectively, also correcting for calibration errors. New rotational constants are obtained using a rigid rotor Hamiltonian by simultaneously fitting the ground, 2CH and 2CH + torsion states in C2H2–N2O, and the latter state, only, in C2H2–CO2.  相似文献   

2.
The infrared spectrum of 12C2HD has been observed between 1800 and 4700?cm?1 by Fourier transform spectroscopy. The ν1, ν2 and ν3 absorption bands and the associated hot and combination bands involving the bending modes up to υt?=?υ4?+?υ5?=?2 have been investigated. Altogether, 60 vibrational bands were analysed, leading to the spectroscopic characterization of 31 vibrationally excited states. Several perturbations have been observed, but the transitions involving the perturbing states have not been detected. As a consequence, an appropriate treatment of the vibrational or ro-vibrational interactions has not been possible. A tentative assignment of the perturbing states has been proposed. Eventually, global fits for each fundamental vibration and its associated cold and hot bands have been performed.  相似文献   

3.
Optics and Spectroscopy - SF6 and H2 broadening and shift of the vibration–rotation lines in the fundamental band of hydrogen fluoride have been investigated. Using mathematical modeling of...  相似文献   

4.
Rovibrational spectra of Ar–D2O and Kr–D2O complexes are measured in the v2 bend region of D2O monomer using a tunable mid-infrared diode laser spectrometer. One para and two ortho bands for both complexes are identified and then analyzed in terms of a nearly free internal rotor model. Molecular constants for the excited vibrational states, including band-origin, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. A comparison of the observed band-origins of Ar–D2O and Kr–D2O with the previous results of Ne–D2O shows regular trends of shift from Kr–D2O to Ne–D2O.  相似文献   

5.
Infrared spectra of C2D2–water complexes are studied in the 4.1 μm region of the C2D2 ν3 fundamental band using a tunable diode laser source to probe a pulsed supersonic slit jet. Relatively large vibrational red shifts (?27.7 to ?28.0 cm?1) are observed which are more easily interpretable than for the analogous C2H2 vibration thanks to the absence of Fermi resonance effects for C2D2. Noticeable homogeneous line broadening leads to estimates of upper state predissociation lifetimes of about 0.5, 0.9 and 1.1 ns for C2D2–H2O, –HDO, and –D2O, respectively. Transitions involving Ka = 0 and 1 levels are observed for C2D2–HDO, but there is a puzzling absence of Ka = 1 for C2D2–H2O and C2D2–D2O.  相似文献   

6.
Russian Physics Journal - The spectrum of the cis-ethylene-d2 molecule (C2H2D2-cis) has been recorded with a Bruker IFS 120 HR Fourier spectrometer in the wavelength region 1100–2000...  相似文献   

7.
The absorption spectrum of dideuteroacetylene has been recorded by intracavity laser absorption spectroscopy (ICLAS) in the 10 200–12 500cm?1 spectral region. Among 25 absorption bands of 12C2D2 rotationally analysed in this spectral region, 17 are newly observed. They include one IIu+ g and thirteen Σ+ u+ g bands starting from the vibrational ground state and eleven hot bands from the V 4 = 1 and V 5 = 1 lower states. The rotational structure of two excited levels is affected by a strongly J-dependent interaction with a perturber which induces intensity transfer to extra lines. The coupling is identified as a I-resonance interaction with δu dark states and the vibrational assignment of the perturbers is discussed. Two Σ-Σ bands of the 12C13 CD2 species, present in natural abundance in the sample, could also be identified and rotationally analysed. Most of the corresponding excited vibrational levels of 12C2D2 were unambiguously assigned using the polyad model [Herman, M., el idrissi, M. I., Pisarchik, A., Campargue, A., Gaillot, A.-C., Biennier, L., di lonardo, G. and Fusina, L., 1998, J. chem. Phys., 108, 1377] which allows vibrational energies and B V rotational constants to be predicted. In particular the previously highlighted 1/244 anharmonic resonance is confirmed by energy and intensity features in several {(V 1, V 2, V 3, V 4 = 0, V 5 = 0),(V 1 ?1, V 2 + 1, V 3 V 4 = 2, V 5 = 0)} dyads. Significant deviations between predicted and experimental energy levels are observed for a few levels and discussed.  相似文献   

8.
Infrared and Raman spectra of dideuterated acetylene containing one 13C atom, 13C12CD2, have been recorded and analysed to obtain detailed information on the fundamental ν 2 band and associated combination and hot bands. Infrared spectra were recorded at 4?×?10?3?cm?1 resolution in the region 1150?2900?cm?1, which contains combination and hot bands from the ground and the bending v 4?=?1 and v 5?=?1 states. The Q-branches of the ν 2 fundamental and associated hot bands (ν 2?+?ν 4???ν 4, ν 2?+?ν 5???ν 5, ν 2?+?2ν 4???2ν 4, ν 2?+?2ν 5???2ν 5 and ν 2?+?ν 4?+?ν 5???(ν 4?+?ν 5)) were recorded using inverse Raman spectroscopy, with an instrumental resolution of about 3?×?10?3?cm?1. In addition, the observation of the 2ν 2???ν 2 Raman band was carried out populating the v 2?=?1 state by stimulated Raman pumping. In total, 11 Raman and 9 infrared bands were analysed, involving all the l-vibrational components of the excited stretching?bending manifolds up to v t ?=?v 4?+?v 5?=?2.

A simultaneous analysis of all infrared and Raman assigned transitions has been performed on the basis of a theoretical model which takes into account the rotation and vibration l-type resonances within each vibrational manifold and the Darling?Dennison anharmonic resonance between the ν 2?+?2ν 4 and ν 2?+?2ν 5 states. The parameters obtained reproduce the assigned transition wavenumbers with a standard deviation of the same order of magnitude as the experimental uncertainty.  相似文献   

9.
The refractivity of the CO2 gas is measured with an experimental error of 2% in the 10-m region, using 10.4-m band CO2 laser line. The frequency of the CO2 laser is swept through the Doppler profile of the laser line. The experiment is achieved using a 0.63-m He–Ne/10.6-m CO2-laser interferometer with a 2-m long vacuum cell. From the result, it is found that the Koch's formula also holds for the wavelengths in the 10-m region within an accuracy of 2%.  相似文献   

10.
We report observation of intense spontaneous amplified radiation of Li2 diffuse violet band in the 4100–4900 Å region. The radiation is strongly enhanced when the lithium vapor in a heat pipe is optically pumped with a pulsed dye laser with the output wavelength tuned to near the Li 2s–4s two-photon resonance transition. The diffuse violet band can probably be assigned to a recently reported triplet bound-free (23 g a 3 u + ) transition. It is found that the productions of the molecular diffuse band are contributed from Li atoms as well as Li2 molecules. The excitation functions and their dependence on laser power density are presented and the mechanisms for producing the diffuse bands are discussed.Department of Physics, National Central University, Chung-Li, Taiwan, Republic of Chinabl]References  相似文献   

11.
The use of various approximations in calculating proton projected ranges has been studied by the analytical and the Monte Carlo methods. A correction is presented for the projected ranges given in the compilation (Andersen and Ziegler: Hydrogen Stopping Powers and Ranges in All Elements). The greatest correction factors at 1, 10, 100 and 1000 keV are 3.5, 2.1, 1.4 and 1.2, respectively. The corrections result from the inclusion of the tabulated electronic stopping power values in the calculation of the projected ránge to the total range ratio and from the estimation of the effect of the reflection. The Monte Carlo calculations show the electronic straggling to be a remarkable factor in the width of the proton range distributions at reduced energies larger than of the order of 100.  相似文献   

12.
The fundamental ro-vibrational bands and the 2ν4?←?GS, 2ν5?←?GS, 2ν3?←?GS, ν4?+?ν5?←?GS, ν3?+?ν4?←?GS, ν3?+?ν4?←?ν?4, ν3?+?ν5?←?ν5, overtone, combination and hot bands of the two rare isotopologues of acetylene H12C13CD and H13C12CD have been detected by Fourier transform infrared spectroscopy (FTIR). The analysis of the data has provided very accurate rotational and vibrational parameters for the ground and for the vibrationally excited states.  相似文献   

13.
《Solid State Ionics》1987,24(4):281-287
The electromotive force (EMF) of the COCO2 sensor using Na2CO3 and NASICON (Na3Zr2Si2PO12) as solid electrolytes has been examined in COCO2Ar atmospheres. The EMF is related to the partial pressures of CO and CO2 and proportional to log(P2CO2P−1CO). The simultaneous use of the oxygen sensor of stabilized zirconia gives the EMF proportional to log(PCO2P−1CO). The EMF's of two sensors permit to determine individually partial pressures of CO and CO2. The existence of H2 with high concentration does not affect the EMF's. This fact proves the applicability of the two-sensor system to the monitoring and the controlling of reducing atmospheres in industrial processes.  相似文献   

14.
《Molecular physics》2012,110(21-22):2751-2760
Accurate ab initio intermolecular potential energy surfaces (IPES) have been obtained for the first time for the ground electronic state of the C2H2–Kr and C2H2–Xe van der Waals complexes. Extensive tests, including complete basis set and all-electron scalar relativistic results, support their calculation at the CCSD(T) level of theory, using small-core relativistic pseudopotentials for the rare-gas atoms and aug-cc-pVQZ basis sets extended with a set of 3s3p2d1f1g mid-bond functions. All results are corrected for the basis set superposition error. The importance of the scalar relativistic and rare-gas outer-core (n–1)d correlation effects is investigated. The calculated IPES, adjusted to analytical functions, are characterized by global minima corresponding to skew T-shaped geometries, in which the Jacobi vector positioning the rare-gas atom with respect to the center of mass of the C2H2 moiety corresponds to distances of 4.064 and 4.229?Å, and angles of 65.22° and 68.67° for C2H2–Kr and C2H2–Xe, respectively. The interaction energy of both complexes is estimated to be ?151.88 (1.817?kJ?mol?1) and ?182.76?cm?1 (2.186?kJ?mol?1), respectively. The evolution of the topology of the IPES as a function of the rare-gas atom, from He to Xe, is also discussed.  相似文献   

15.
16.
17.
18.
The broadening, shifting and mixing coefficients of the doublet spectral lines in the ν2 and ν4 bands of PH3 perturbed by H2 have been determined at room temperature. Indeed, the collisional spectroscopic parameters: intensities, line widths, line shifts and line mixing parameters, are all grouped together in the collisional relaxation matrix. To analyse the collisional process and physical effects on spectra of phosphine (PH3), we have used the measurements carried out using a tunable diode-laser spectrometer in the ν2 and ν4 bands of PH3 perturbed by hydrogen (H2) at room temperature. The recorded spectra are fitted by the Voigt profile and the speed-dependent uncorrelated hard collision model of Rautian and Sobelman. These profiles are developed in the studies of isolated lines and are modified to account for the line mixing effects in the overlapping lines. The line widths, line shifts and line mixing parameters are given for six A1 and A2 doublet lines with quantum numbers K = 3n,?(n = 1,?2, …) and overlapped by collisional broadening at pressures of less than 50 mbar.  相似文献   

19.
Pressure-broadening coefficients for several rotation-vibration lines in the ν2 bands of HDO, H216O, and H218O have been determined from laboratory spectra recorded in the 1260- to 1360-cm−1 region with a tunable diode laser spectrometer system. Air and nitrogen were used as the broadening gases and, for all the measured transitions, the nitrogen-broadened half-widths were found to be consistently larger than the corresponding air-broadened half-widths by about 12%. The results have been compared to previously published values when appropriate.  相似文献   

20.
Spectral measurements of two line pairs of CO2 and CO in the temperature range 300–1000 K at 1.573 µm were performed using a fiber-coupled distributed feedback (DFB) diode laser. The two line pairs can be used in a tunable diode laser (TDL) absorption sensor for simultaneously detecting CO2 and CO gas in a single scan of the diode laser. The spectral parameters (line strengths, air-broadening coefficients and the temperature exponent n) of the two pairs are presented. The measured data agree well with existing databases (HITRAN 2004 and HITRAN 2008), the discrepancies being less than 5% for most of the probed transitions. Although the HITRAN database is a useful tool for sensor design, we found that laboratory measurements of the spectroscopic data for the line pair selected for high-temperature sensors are necessary for establishing the uncertainty for accurate measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号