首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel, chiral‐selective linear nanotubular heterojunctions were achieved by living supramolecular polymerization of perylenediimide (PDI) derivatives. We demonstrate that the chiral seed can effectively bias achiral PDI molecules to polymerize on its ends in the identical helical sense. More interestingly, the chiral seed can bias the opposite enantiomers to grow expitaxially from its ends even in excess amounts relative to the seed. Furthermore, we demonstrate that the biasing effect of the chiral seed on the opposite enantiomer is not dependent on the length of the chiral seed but is related to the intrinsic length of the elongated nanotube from the opposite enantiomer. The fabrication of chiral‐selective nanotubes was achieved by application of the unique biasing effect of the chiral seed in living supramolecular self‐assembly.  相似文献   

2.
Here, we construct a handedness‐dependent circular polarized light (CPL)‐activated chiral satellite assemblies formed from DNAzymes and spiny platinum modified with gold nanorods and upconversion nanoparticles (UCNPs), enabling the simultaneous quantitative analysis of multiple divalent metal ions in living cells. The chiral nanoprobes, in coordination with their corresponding divalent metal ions under 980 nm left circular polarized (LCP) light illumination, served as an in situ confocal bioimaging platform for the quantitation of the given intracellular metal ions. The limit of detection (LOD) of the chiral probes in living cells is 1.1 nmol/106 cells, 1.02 nmol/106 cells and 0.45 nmol/106 cells for Zn2+, Mg2+, and Cu2+, respectively.  相似文献   

3.
Liquid crystals represent a unique class of self-organising systems, which although found in many day-to-day practical material applications, such as displays, are also intimately entwined with living processes. They have the potential, just like living systems, to provide us with a unique vehicle for the development of self-ordering nano- and mesoscopic-engineered materials with specific functional properties. In this article we describe a new concept for the design of self-assembling functional liquid crystals as segmented or "Janus" liquid-crystalline supermolecular materials in the form of structures that contain two different types of mesogenic units, which favour different types of mesophase structure, grafted onto the same star-shaped scaffold to create supermolecules that contain different hemispheres. The materials exhibit chiral nematic and chiral smectic C phases.  相似文献   

4.
李启彭  罗家刚  和晓全  张泽俊 《化学通报》2016,79(11):1021-1027
手性配位聚合物因其结构多样性、可调控性以及潜在的多功能性,已经成为当前化学和材料学的研究热点。在合成中,可以通过选择特定的非手性配体、手性配体、手性溶剂或手性模板剂等来构筑手性配位聚合物。此外,还可以选择特定的金属离子赋予目标手性配位聚合物光、电、磁、催化和非线性光学等性能。本文详细综述了近年来纯手性配位聚合物的合成方法,以及在手性分离、手性催化、非线性光学、铁电和多铁等领域的应用研究进展。最后,对手性配位聚合物的合成方法及应用前景进行了展望。  相似文献   

5.
Chiral compounds are known to be important not only because they are the fundamental components of living organisms, but also for their unique chiroptical properties. In recent years, scientists have fabricated several chiral organic supramolecular aggregates by using chiral physical fields, such as vortex flow. Herein, the relationship between dynamic chiroptical properties and rheological nature is discussed, suggesting the shear thinning properties of non-Newtonian fluids might help colloidal particles adopt a chiral arrangement in vortices. Furthermore, the storage modulus of colloids could be increased by adding a linking agent, which successfully kept the dynamic chiroptical properties in the static state. Moreover, the salt effect on the host–guest interaction involved in the colloids was studied, the results suggested a significant enhancement of the transferred dynamic circular dichroism for the achiral guest molecule.  相似文献   

6.
Chiral metabolites are found in a wide variety of living organisms and some of them are understood to be physiologically active compounds and biomarkers. However, the overall analysis of chiral metabolomics is quite difficult due to the high number of metabolites, the significant diversity in their physicochemical properties, and concentration range from metabolite-to-metabolite. To solve this difficulty, we developed a novel approach for chiral metabolomics fingerprinting and chiral metabolomics extraction, which is based on the labeling of a pair of enantiomers of chiral derivatization reagents (i.e., DMT-(S,R)-Pro-OSu and DMT-3(S,R)-Apy) and precursor ion scan chromatography of the derivatives. The multivariate statistics is also required for this strategy. The proposed procedures were evaluated by the detection of a diagnostic marker (i.e., d-lactic acid) using the saliva of diabetic patients. This method was used for the determination of biomarker candidates of chiral amines and carboxyls in Alzheimer's disease (AD) brain homogenates. As the results, l-phenylalanine (L-Phe) and l-lactic acid (L-LA) were identified as the decreased and increased biomarker candidates in the AD brain, respectively. Therefore, the proposed approach seems to be helpful for the determination of non-target chiral metabolomics possessing amines and carboxyls.  相似文献   

7.
Poly(n-hexyl isocyanate) (PHIC) with varying molecular weights were synthesized using a chiral initiator and chiral terminator by living anionic polymerization. In such PHICs, chirality of the initiator plays a decisive role in determining the helical sense of the entire polymeric chain, whereas chirality of the terminator plays a supportive role.  相似文献   

8.
Coordination polymers and metal-organic frameworks are prime candidates for general chemical sensing, but the use of these porous materials as chiral probes is still an emerging field. In the last decade, they have found application in a range of chiral analysis methods, including liquid- and gas-phase chromatography, circular dichroism spectroscopy, fluorescence sensing, and NMR spectroscopy. In this minireview, we examine recent works on coordination polymers as chiral sensors and their enantioselective host-guest chemistry, while highlighting their potential for application in different settings.  相似文献   

9.
Chiral assemblies have attracted great interest because of their many potential applications, such as in chiral sensing, asymmetric catalysis, and optical devices. Here, by using specific DNAzymes, a chiral core–satellite assembly consisting of a DNAzyme-driven spiny nanorod dimer core and upconversion nanoparticle (UCNP) satellite was constructed. The chirality of this assembly originates from the geometry chirality. This chiral assembly can be used as a photothermally activated probe for the simultaneous detection of multiple analytes in living cells. Under illumination with 980 nm left circularly polarized (LCP) light, this probe was used to quantify and visualize intracellular metal ions.  相似文献   

10.
We have synthetized medium-sized cyclophanes and macrocycles containing phosphonic groups, directly linked to the aromatic rings of the phanes or as pendant arms,for use as specific receptors for the selective complexation of neutral guests or for complexing lanthanides, as luminescent sensors and for diagnostic bioassays in medicine.Furthermore, because it would be of great interest for biochemistry as well as for pharmacological studies to dispose of preorganized rigid chiral hosts for biorelevant molecules we designed inter alia, some new chiral macrocycles capable of a triple binding mode and we used them for constructing macrocycles that could also be of interest for chiral recognition and chiral separations. Thus, in this paper we shall review the salient aspects of some macrocycles synthetized in our laboratory, all possessing the phosphonate moiety and a spirobisindanol scaffold and able to act as complexing agents for cations and organic substrates. In particular, we shall describe their NMR characterization, their stereochemistry in solution and in the solid state, and their use as chiral receptors for biorelevant molecules. Chiral HPLC resolution of some of them is also reported.  相似文献   

11.
We report the unique synthesis of chiral supramolecular tri- and penta-BCPs with controllable chirality using kinetically adjusted seeded supramolecular copolymerization in THF and DMSO (99 : 1, v/v). Tetraphenylethylene (d - and l -TPE) derivatives bearing d - and l -alanine side chains formed thermodynamically favored chiral products via a kinetically trapped in monomeric state with a long lag phase. In contrast, achiral TPE-G containing glycine moieties did not form a supramolecular polymer owing to the energy barrier in its kinetically trapped state. We show that the copolymerization of the metastable states of TPE-G not only enables the generation of supramolecular BCPs by the seeded living growth method, but also transfers chirality at the seed ends. This research demonstrates the generation of chiral supramolecular tri- and penta-BCPs with B-A-B, A-B-A-B-A, and C-B-A-B-C block patterns accompanying chirality transfer via seeded living polymerization.  相似文献   

12.
The design and synthesis of achiral organic functional molecules which can assemble into a chiral with selective handedness in the absence of chiral substances is an important in understanding the role chirality plays within these systems. In this review, we described general approaches towards supramolecular chiral molecules the synthesis and self‐assembly of achiral molecule to active chiral molecules to investigate controlled supramolecular chiral nanostructures with their photoluminescent properties for rapid, sensitive and selective detection of analytes of choice. Various small molecules have been discussed for achiral to chiral along with induction of chirality and controlled chiral helical structures in detail. We discussed few examples where stimuli used to control the chirality such as temperature, pH etc. Finally, we will also explore on the photo responsive helicity properties of the aggregation induced emission active molecule such as tetraphenylethene conjugates.  相似文献   

13.
李岩云 《分子催化》2011,25(1):90-96
本文介绍了手性铁催化体系在酮及亚胺的不对称还原、烯烃及硫醚的不对称氧化、不对称环加成、不对称环丙烷化以及不对称Friedel-Crafts烷基化等反应中的应用.  相似文献   

14.
In this paper, we report a new type of chiral high-performance liquid chromatography (HPLC) column—a so-called dress-up chiral column—featuring a chiral stationary phase adsorbed reversibly in a commercial fluorous HPLC column through fluorous interactions. We synthesized perfluroalkylated proline derivatives as chiral stationary phase compounds and then adsorbed them reversibly in the fluorous HPLC column through the pumping of their solutions. By using this dress-up chiral column and fluorophobic elution of an aqueous copper(II) sulfate/MeOH mixture, we could enantioseparate seven racemic amino acids within 40 min. When we washed the dress-up chiral column with fluorophilic tetrahydrofuran or MeOH, the adsorbed chiral stationary phase compounds desorbed from the column, completely destroying its enantioseparation ability. The relative standard deviation of the retention times, the number of theoretical plates, and the resolution for each of four preparations of the dress-up columns were all less than or equal to 9.53 % in 20-times repeated analysis, and were all less than or equal to 18.7 % in four different preparations, respectively.  相似文献   

15.
Wagner N  Rubinov B  Ashkenasy G 《Chemphyschem》2011,12(15):2771-2780
The origin of long homochiral biopolymers in living systems has recently been the focus of intense research. In one particular research line, scientists studied, experimentally and theoretically, chiral amplification obtained during peptide formation by polymerization of amino acid building blocks. It was suggested that processes leading to temporal or spatial separation, and thus, to the growth of homochiral polymers at the expense of their heterochiral counterparts, can explain the chirality observed in larger molecules. We introduce a simple model and stochastic simulation for the polymerization of amino acids and β-sheet formation, showing the crucial effects of the β sheets on the distributions of peptide lengths. When chiral affinities are included, racemic β sheets of alternating homochiral strands lead to the formation of chiral peptides, the isotacticity of which increases with length, consistent with previous experimental results in aqueous solutions. The tendency to form isotactic peptides is shown for both initially racemic and initially nonracemic systems, as well as for closed and open systems. We suggest that these or similar mechanisms may explain the origin of chiroselectivity in prebiotic environments.  相似文献   

16.
In the rapidly expanding fields of nanoscience and nanotechnology, there is considerable interest in chiral nanomaterials, which are endowed with unusually strong circular dichroism. In this review, we summarize the principles of organization underlying chiral nanomaterials and generalize the recent advances in the main strategies used to fabricate these nanoparticles for bioscience applications. The creation of chirality from nanoscale building blocks has been investigated both experimentally and theoretically, and the tunability of chirality using external fields, such as light and magnetic fields, has allowed the optical activity of these materials to be controlled and their properties understood. Therefore, the specific recognition and potential applications of chiral materials in bioscience are discussed. The effects of the chirality of nanostructures on biological systems have been exploited to sense and cut molecules, for therapeutic applications, and so on. In the final part of this review, we examine the future perspectives for chiral nanomaterials in bioscience and the challenges posed by them.

In this review, we summarize the principles of fabrication on chiral nanomaterials and generalize the recent achievements for the bioscience applications.  相似文献   

17.
The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes.  相似文献   

18.
Molecular chiral asymmetry, created in the biosphere during biological evolution, is unambiguously realized in today’s world at the genetic level and in biosynthesis. According to our hypothesis, origination of molecular chiral asymmetry is associated with fractionation of enantiomers of chiral compounds that abiogenously evolved at the ocean-atmosphere nonequilibrium boundary during origination of the predecessors of living cells.  相似文献   

19.
Mimicking the superstructures and functions of natural chiral materials is beneficial to understand specific biological activities in living organisms and broaden applications in the fields of chemistry and materials sciences. However, it is still a great challenge to construct water-soluble, double-helical polymers with multiple responsiveness. Herein, we report for the first time a straightforward, general strategy to address this issue by taking advantage of Passerini multicomponent polymerization-induced assembly (PMPIA). The polymerization-induced generation of supramolecular interactions in chiral α-acyloxy amides drives the assembly of polymers and improves their stability in various solvents. This double-helical polymer is sensitive to metal ions, temperature, pH, and solvents, making both the superstructure and the AIE effect reversibly adjustable. Meanwhile, the hydrogen-bonding-assisted cyclization of photolabile α-acyloxy amides accelerates the degradation of helical polymers under visible-light irradiation. It is anticipated that this novel PMPIA strategy opens new horizons to inspire the design of advanced chiral/helical polymers with multiple functions.

Passerini multicomponent polymerization-induced assembly is reported to design a water-soluble, AIE-active, double-helical polymer with reversible multi-responsiveness to external stimuli and rapid visible-light degradability.  相似文献   

20.
In this paper, we describe for the first time the synthesis of new chiral nanosized metal oxide surfaces based on chiral self‐assembled monolayers (SAMs) coated with metal oxide (TiO2) nanolayers. In this new type of nanosize chiral surface, the metal oxide nanolayers enable the protection of the chiral self‐assembled monolayers while preserving their enantioselective nature. The chiral nature of the SAM/TiO2 films was characterized by variety of unique techniques, such as second‐harmonic generation circular dichroism (SHG‐CD), quartz crystal microbalance, and chiral adsorption measurements with circular dichroism spectroscopy. The chiral resolution abilities of the SAMs coated with metal oxide (TiO2) nanolayers were investigated in the crystallization of a racemic mixture of threonine and glutamic acid. Our proposed methodology for the preparation of nanoscale chiral surfaces described in this article could open up opportunities in other fields of chemistry, such as chiral catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号