首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of the structures of 8,8-(PPh3)2-8,7-nido-RhSB9H10 and 9,9-(PPh3)2-9,7,8-nido-RhC2B8H11 by RMS misfit calculations has confirmed that these rhodaheteroboranes possess nido 11-vertex cluster geometries in apparent contravention of Wade's rules. However, examination of the molecular structures of both species shows that the {RhP2} planes are inclined by ca. 66° with respect to the metal-bonded SB3 or CB3 faces, and that two weak ortho-CHRh agostic interactions occupy the vacant co-ordination position thereby created. As a consequence of these agostic bonds the Rh atom, and hence the overall cluster, is provided with an additional electron pair, meaning that their nido structures are now fully consistent with Wade's rules. The chelated diphosphine compound 8,8-(dppe)-8,7-nido-RhSB9H10 is similar to the PPh3 compound in showing the same agostic bonding. Attempts to prepare a bis-P(OMe)3 analogue result in ligand scavenging and the formation of 8,8,8-{P(OMe)3}3-8,7-nido-RhSB9H10. Similarly, reaction between Cs[6-arachno-SB9H12] and RhCl(dmpe)CO does not result in CO loss but in formation of 8,8-(dmpe)-8-(CO)-8,7-nido-RhSB9H10, shown to exist as a mixture of two of three possible rotamers. Deprotonation of 8,8-(PPh3)2-8,7-nido-RhSB9H10 and 8,8-(dppe)-8,7-nido-RhSB9H10 with MeLi yields the anions [1,1-(PPh3)2-1,2-closo-RhSB9H9] and [1,1-dppe-1,2-closo-RhSB9H9], respectively, with octadecahedral cage structures. It is argued that anion formation causes the agostic bonding to be `switched-off' and results in the cluster adopting the closo architecture predicted by Wade's rules. This structural change is fully reversible on reprotonation, and if reprotonation of [1,1-(dppe)-1,2-closo-RhSB9H9] is carried out in MeCN, the product 8,8-(dppe)-8-(MeCN)-8,7-nido-RhSB9H10 forms. Interestingly, 8,8-(dppe)-8-(MeCN)-8,7-nido-RhSB9H10 reconverts to 8,8-(dppe)-8,7-nido-RhSB9H10 on standing in CDCl3, suggesting that the agostic bonding is sufficiently strong to displace co-ordinated MeCN. All new compounds are fully characterised by multinuclear NMR spectroscopy and, in many cases, by single crystal X-ray diffraction.  相似文献   

2.
[PtCl2(PPh3)2]与B10H102-在异丙醇中回流反应, 得到3个巢式十一顶铂十硼烷簇合物: [(PPh3)2PtB10H11-9-O-i-Pr] (1), [(PPh3)2PtB10H10-8,10-(O-i-Pr)2] (2)和[(PPh3)2PtB10H11-8-O-i-Pr] (3). 簇合物13都具有PtB10多面体骨架结构, 其中Pt原子位于敞开的PtB4面上, 且与4个B原子成键, 每个Pt原子还与2个PPh3基团中的P原子成键. 将溶剂热合成的方法引入到硼簇合物的合成中并进行同一反应, 得到2个B10H102-降解的巢式十一顶双铂九硼烷簇合物: [(PPh3)2(μ-PPh2)Pt2B9H6-3,9,11-(O-i-Pr)3] (4)和[(PPh3)2(μ-PPh2)Pt2B9H6-3,9-(O-i-Pr)2-11-Cl] (5). 簇合物45都具有Pt2B9多面体骨架结构, 2个Pt原子位于敞开的Pt2B3面上的相邻位置, 且由一个PPh2基团桥连, 每个Pt原子还与3个B原子和一个PPh3基团中的P原子成键. 通过红外光谱、元素分析、X射线单晶衍射对5个簇合物进行了结构表征.  相似文献   

3.
The reaction of [nido-7-SB10H12] with [RhCl(PPh3)3] in the presence of N,N,NN′-tetramethylnaphthalene-1,8-diamine (tmnd) in CH2Cl2 gives twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-RhSB10H10] (1) and eleven-vertex [8,8-(PPh3)2-nido-8,7-RhSB9H10] (2), as major products, plus the dimeric species [{(PPh3)-closo-RhSB10H10}2] (3) as a minor product. Reaction of 1 with PMe2Ph in CH2Cl2 results in phosphine exchange and hydride substitution, affording the chloro analogue of 1, [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4). By contrast, reaction between [IrCl(PPh3)3] and [nido-7-SB10H12] in CH2Cl2 with tmnd affords only one product, twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-IrSB10H10] (5). [RhCl25-C5Me5)]2 with [nido-7-SB10H12] under the same conditions gives twelve-vertex [2-(η5-C5Me5)-closo-2,1-RhSB10H10] (6). All the compounds are characterised by NMR spectroscopy, and by mass spectrometry, and the molecular structure of [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4) was established by single-crystal X-ray diffraction analysis. This last rhodathiaborane 4 is fluxional in solution through a process that involves a reversible partial rotation of the {RhCl(PMe2Ph)2} unit above the {SB4} pentagonal face of the {SB10H10} fragment.  相似文献   

4.
Reaction of [Ru(PPh3)4H2] with BH3 · thf at room temperature gives borane oligomerisation with the formation of the 6-vertex metallaborane nido-2-[Ru(PPh3)2(H)B5H10] (1). This cluster is also formed by reaction of [Ru(PPh3)4H2] with nido-B5H9. Compound (1) is readily deprotonated by KH in thf at the unique basal B-H-B bridge to give (2). In contrast to [Ru(PPh3)4H2] reaction of [cis-Ru(PMe3)4H2] with BH3 · thf gives initially the known borohydride [Ru(PMe3)3(H)(η2-BH4)] which reacts with excess BH3 · thf to give the 5-vertex metallaborane nido-2-[Ru(PMe3)3B4H8] (3). Reaction of [cis-Ru(PMe3)4H2] with nido-B5H9 also gives (3) and nido-2-[Ru(PMe3)3B9H13] (4). [cis-Ru(PMe3)4H2] is conveniently prepared in high yield in a one-pot synthesis by the sodium amalgam reduction of RuCl3 · 3H2O in thf with excess PMe3 under dinitrogen.  相似文献   

5.
The treatment of [1,1‐(PR3)2‐3‐(Py)‐closo‐1,2‐RhSB9H8] (PR3=PMe3 ( 2 ) or PPh3 and PMe3 ( 3 ); Py=pyridine) with triflic acid (TfOH) affords [1,3‐μ‐(H)‐1,1‐(PR3)2‐3‐(Py)‐1,2‐RhSB9H8]+ (PR3=PMe3 ( 4 ) or PMe3 and PPh3 ( 5 )). These products result from the protonation of the 11‐vertex closo‐cages along the Rh(1)? B(3) edge. These unusual cationic rhodathiaboranes are stable in solution and in the solid state and they have been fully characterized by multinuclear NMR spectroscopy. In addition, compound 5 was characterized by single‐crystal X‐ray diffraction. One remarkable feature in these structures is the presence of three {Rh(PPh3)(PMe3)}‐to‐{ηn‐SB9H8(Py)} (n=4 or 5) conformers in the unit cell, thus giving an uncommon case of conformational isomerism. [1,1‐(PPh3)2‐3‐(Py)‐closo‐1,2‐RhSB9H8] ( 1 ), that is, the bis‐PPh3‐ligated analogue of compounds 2 and 3 , is also protonated by TfOH, but, in marked contrast, the resulting cation, [1,3‐μ‐(H)‐1,1‐(PPh3)2‐3‐(Py)‐1,2‐RhSB9H8]+ ( 6 ), is attacked by a triflate anion with the release of a PPh3 ligand and the formation of [8,8‐(OTf)(PPh3)‐9‐(Py)‐nido‐8,7‐RhSB9H9] ( 9 ). The result is an equilibrium that involves cationic species 6 , neutral OTf‐ligated compound 9 , and [HPPh3]+, which is formed upon protonation of the released PPh3 ligand. The resulting ionic system reacts readily with H2 to give cationic species [8,8,8‐(H)(PPh3)2‐9‐(Py)‐nido‐8,7‐RhSB9H9]+ ( 7 ). This reactivity is markedly higher than that previously found for compound 1 and it introduces a new example of proton‐assisted H2 activation that occurs on a polyhedral boron‐containing compound.  相似文献   

6.
Solvothermal synthesis method has been successfully introduced into the diphosphine carborane system, and two new nickel complexes containing nido-carborane diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] with the formula [Ni2(μ-Cl)(μ-OOPPh2){7,8-(PPh2)2-7,8-C2B9H10}2]·CH2Cl2 (1) and [H3O][NiBr2] {7,8-(PPh2)2-7,8-C2B9H10}·C6H6 (2) were obtained by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with NiCl2·6H2O or NiBr2·6H2O in CH2Cl2 under the solvothermal condition. Both of the two complexes have been characterized by the elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and single crystal X-ray diffraction. The X-ray structure analysis for these two complexes reveals the nido-nature of the carborane diphosphine ligand, indicating that the solvothermal synthesis is an efficient method for the degradation of the closo-carborane diphosphine ligand.  相似文献   

7.
The reaction of [PtCl2(PPh3)2] with closo‐B10H102? in ethanol under reflux conditions gave two nido 11‐vertex platinaundecaborane clusters: [(PPh3)2PtB10H10‐8,10‐(OEt)2]·CH2Cl2 (1) and [(PPh3)2PtB10H11‐11‐OEt]·CH2Cl2 (2) . A novel B10H102? deboronated nido 11‐vertex diplatinaundecaborane [(µ‐PPh2)(PPh3)2Pt2B9H6‐3,9,11‐(OEt)3]·CH2Cl2 (3) was obtained when the same reaction was carried out under solvothermal conditions. All of these compounds were characterized by infrared spectroscopy, NMR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. Both clusters 1 and 2 have a nido 11‐vertex {PtB10} polyhedral skeleton in which the Pt atom lies in the open PtB4 face. Each Pt atom connects with four B atoms and two P atoms of the PPh3 ligands. Cluster 3 has a nido 11‐vertex {Pt2B9} polyhedral skeleton in which two Pt atoms sit in neighbouring positions of the open Pt2B3 face, bridged by a PPh2 group. Each Pt atom connects three B atoms and a P atom of the PPh3 ligand. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A tetranuclear gold cluster has been synthesized by the reaction of [Au(PPh3)NO3] with the closo carborane diphosphine 1,2-(PPh2)2-1,2-C2B10H10 in THF, and characterized by elemental analysis, FT-IR, 1H and 13C?NMR spectroscopy and X-ray structure determination. The cluster crystallizes in the triclinic Pī, a?=?15.118(8)?Å, b?=?16.057(9)?Å, c?=?24.284(13)?Å, α?=?80.822(9)°, β?=?79.624(8)°, γ?=?81.938(8)°, Z?=?2, R 1?=?0.0626, wR 2?=?0.1894. A single crystal structure determination showed that four gold atoms form a tetrahedral framework. Among these four gold atoms, two were chelated by two nido carborane diphosphine [7,8-(PPh2)2-7,8-C2B9H10]? anions coming from the degradation of the initial closo ligand 1,2-(PPh2)2-1,2-C2B10H10, while the other two were ligated to two PPh3 groups. The luminescence of this cluster was also investigated in dichloromethane solution at room temperature.  相似文献   

9.
Chelate exo-nido-ruthenacarboranes exo-5,6,10-[RuCl(Ph2P(CH2)4PPh2)]-5,6,10-(μ-H)3-10-H-7,8-R,R′-nido-7,8-C2B9H6 (R, R′ = H, PhCH2) were synthesized by the direct method using the reaction of Cl2Ru(PPh3)(Ph2P(CH2)4PPh2) with [7,8-R,R′-nido-7,8-C2B9H10][K] in benzene. Unsubstituted exo-nido-ruthenacarborane (R, R′ = H) was used in situ for the synthesis of the dinuclear Ru-Cu exo-closo cluster of the formula exo-closo-(Ph3P)Cu(μ-H)Ru(Ph2P(CH2)4PPh2)(η5-C2B9H11). The isomerism of the complex and the crystal structure were studied by NMR spectroscopy and X-ray diffraction. The catalytic activity of the cluster in the atom transfer radical polymerization of methyl methacrylate was investigated.  相似文献   

10.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

11.
The reaction of closo-[B10H10]2− with [PtCl2(PPh3)2] in MeOH at reflux affords the B-methoxy substituted 11-vertex nido-platinaborane compound [(PPh3)2PtB10H10-8-H0.5(OCH3)0.5-10-(OCH3)] (1) and the known species [(PPh3)2PtB10H11-8-(OCH3)] (2) and 1,6-(PPh3)2B10H8 (3). The same reaction under solvothermal condition gives the partially degraded diplatinaborane [(PPh3)2(μ-PPh2)Pt2B9H7-3,9,11-(OMe)3] (4) with a novel nido-Pt2B9H10 skeleton. The new metallaborane compounds have been characterized by spectroscopic methods and single-crystal X-ray analyses. In particular, computational/theoretical chemistry supports the ultimate structural confirmation of 4. The structures of these metallaboranes exhibit interesting intra- and/or intermolecular C-H?O hydrogen bonding interactions.  相似文献   

12.
The reactions of the undecaborate anion Cs+C2B9H12 (1) and exo-nido-ruthenacarborane exo-nido-5,6,10-[Cl(Ph3P)2Ru]-5,6,10-(-H)3-10-H-7,8-C2B9H8 (2) with the 9-chloromercurated cobaltacarborane, viz., 3-(5-Cp)-9-ClHg-3,1,2-CoC2B9H10 (3), afforded Cs[10-{3"-(5-Cp)-3",1",2"-CoC2B9H10-9"-Hg}-7,8-C2B9H11] (4) and 5,6,10-exo-nido-[Cl(Ph3P)2Ru]-5,6,10-(-H)3-10-{3"-(5-Cp)-3",1",2"-CoC2B9H10-9"-Hg}-7,8-C2B9H8 (5), respectively. The latter compound exists as two isomers. Compound 5 was prepared also by the reaction of compound 4 with Ru(PPh3)3Cl2.  相似文献   

13.
Herein, we explore the coordination of di- and triimine chelators at ruthenium(II) and ruthenium(III) centers. The reactions of 2,6-bis-((4-tetrahydropyranimino)methyl)pyridine (thppy), N1,N2-bis((3-chromone)methylene)benzene-1,2-diamine (chb), and tris-((1H-pyrrol-2-ylmethylene)ethane)amine (H3pym) with trans-[RuIICl2(PPh3)3] afforded the diamagnetic ruthenium(II) complex cis-[RuCl2(thppy)(PPh3)] (1) and the paramagnetic complexes [mer-Ru2(μ-chb)Cl6(PPh3)2] (2), and [Ru(pym)] (3), respectively. The complexes were characterized by IR, NMR, and UV–vis spectroscopy and molar conductivity measurements. The structures were confirmed by single crystal X-ray diffraction studies. The redox properties of the metal complexes were probed via cyclic- and squarewave voltammetry. Finally, the radical scavenging capabilities of the metal complexes towards the NO and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radicals were investigated  相似文献   

14.
Treatment of [RuCl2(PPh3)3] with 2 equiv. HimtMPh (HimtMPh?=?1-(4-methyl-phenyl)-imidazole-2-thione) in the presence of MeONa afforded cis-[Ru(κ 2-S,N-imtMPh)2(PPh3)2] (1), while interaction of [RuCl2(PPh3)3] and 2 equiv. HimtMPh in tetrahydrofuran (THF) without base gave [RuCl2(κ 1-S-HimtMPh)2(PPh3)2] (2). Treatment of [RuHCl(CO)(PPh3)3] with 1 equiv. HimtMPh in THF gave [RuHCl(κ 1-S-HimtMPh)(CO)(PPh3)2] (3), whereas reaction of [RuHCl(CO)(PPh3)3] with 1 equiv. of the deprotonated [imtMPh]? or [imtNPh]? (imtNPh?=?1-(4-nitro-phenyl)-2-mercaptoimidazolyl) gave [RuH(κ 2-S,N-imtRPh)(CO)(PPh3)2] (R?=?M 4a, R?=?N 4b). The ruthenium hydride complexes 4a and 4b easily convert to their corresponding ruthenium chloride complexes [RuCl(κ 2-S,N-imtMPh)(CO)(PPh3)2] (5a) and [RuCl(κ 2-S,N-imtNPh)(CO)(PPh3)2] (5b), respectively, in refluxing CHCl3 by chloride substitution of the RuH. Photolysis of 5a in CHCl3 at room temperature afforded an oxidized product [RuCl2(κ 2-S,N-imtMPh)(PPh3)2] (6). Reaction of 6 with excess [imtMPh]? afforded 1. The molecular structures of 1·EtOH, 3·C6H14, 4b·0.25CH3COCH3, and 6·2CH2Cl2 have been determined by single-crystal X-ray crystallography.  相似文献   

15.
The reactions of equimolar amounts of trans-[ReOC13(PPh3)2] or trans-[Re(NPh)(PPh3)2Cl3] with a Schiff base formed by condensation of 2-hydroxy-4-methoxybenzaldehyde and ethanolamine (H2L) result in the formation of cis-[ReO(HL)PPh3Cl2] (1a) and trans-[Re(NPh)(HL)(PPh3)Cl2] (2b), respectively, in good yields. 1a and 2b have been characterized by a range of spectroscopic and analytical techniques. The X-ray crystal structures of 1a and 2b reveal that 1a is an octahedral cis-Cl,Cl oxorhenium(V) complex, while 2b is a trans-Cl,Cl phenylimidorhenium(V) complex. The complexes are weakly emissive at room temperature with quantum yields of 10?4. Density functional theory calculations of the electronic properties of the complexes were performed and are in agreement with the experimental results. The complexes display quasi-reversible Re(V)/Re(VI) redox couples in acetonitrile. There is reasonable agreement between the experimental and calculated redox potentials of 1a and 2b.  相似文献   

16.
Weakly polar–polar isosteric pairs of 12-vertex p-carborane [closo-1,12-C2B10H12] (1[12]) and monocarbaborate [closo-1-CB11H12]? (2[12]) nematic liquid crystals, in which the difference in the calculated molecular dipole moment is 11.3 D, were synthesised, and the effect of the dipole moment on nematic phase stability was investigated. The trend observed for the 12-vertex series ([12]) was identical to that of the previously investigated 10-vertex series ([10]) containing [closo-1,10-C2B8H10] (1[10]) and [closo-1-CB9H10]? (2[10]): the uniform increase in the molecular dipole moment in the pairs of mesogens does not correspond to a uniform change in the clearing temperature, TNI. This demonstrates the role of a remote substituent in modulating the intermolecular dipole–dipole interactions. The magnitude of such interactions was calculated (using density functional theory methods) for a pair of polar (2[12]d2[12]d) and an analogous pair of weakly polar (1[12]d1[12]d) molecules. All results for the 12-vertex series ([12]) were analysed relative to the 10-vertex analogues ([10]).  相似文献   

17.
In toluene at reflux temperatures [Ru3(CO)12] and 7-SMe2-nido-7-CB10H12 give the charge-compensated cluster complex [1-SMe2-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(CO)6-closo-2,1-RuCB10H8] (1) . Treatment of 1 with dppm in THF affords [1-SMe2-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(μ -dppm)(CO)4-closo-2,1-RuCB10H8] (2) [dppm = bis(diphenylphosphino)methane; THF = tetrahydrofuran]. The latter complex on heating in THF with [ ]F yields the salt [ ][1-SMe-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(μ -dppm)(CO)4-closo-2,1-RuCB10H8] (3). Reaction of 3 with [AuCl(PPh3)] and Tl[PF6] gives the neutral zwitterionic complex [1-S(Me)Au (PPh3)-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(μ-dppm)(CO)4-closo-2,1-RuCB10H8] (4). The structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction studies.*Dedicated to Professor F. Albert Cotton on the occasion of his 75th birthday, in appreciation of our long friendship and in recognition of his outstanding contributions to the study of complexes with metal–metal bonds.  相似文献   

18.
Reactions of trans-[ReOCl3(PPh3)2] and trans-[ReO(OEt)I2(PPh3)2] with 2-aminophenol (H2ap) in acetonitrile led to the formation of cis-[ReOCl2(Hap)(PPh3)] (1) and trans-[Re(ap)(Hap)I(PPh3)2]I (2), respectively. The X-ray crystal structures show that Hap is coordinated as a bidentate chelate via the neutral amino nitrogen and deprotonated phenolate oxygen, and ap is coordinated as a monodentate through the imido nitrogen. The complexes have been characterized by IR spectroscopy, NMR spectrometry and X-ray crystallography. The bite angle of the Hap chelate is 76.9(1)° and 76.0(1)° in 1 and 2, respectively.  相似文献   

19.
四氯合铂酸钾分别与邻、间、对磺基苯甲酸在乙腈和水中利用水热合成获得了3个铂的N-(1-亚氨基乙基)乙脒配合物:[Pt(NIA)_2]·(2-sb)·2H_2O(1),[Pt(NIA)_2]·(3-sb)·3H_2O(2)和[Pt(NIA)_2]·(1,4-dsb)·2H_2O(3)(NIA=N-(1-亚氨基乙基)乙脒,2-sb~2-=2-磺基苯甲酸二价阴离子、3-sb~2-=3-磺基苯甲酸二价阴离子、1,4-dsb~2-=1,4-二磺基苯二价阴离子)。合成过程中发生了乙氰三聚以及4-sb~2-转变为1,4-dsb~2-的反应。对配合物进行了元素分析、红外、紫外、荧光、热重和粉末X射线衍射表征,并利用单晶X射线衍射测定了配合物的晶体结构。3个配合物为阳离子-阴离子物种,阳离子为[Pt(NIA)_2]~(2+),中心金属离子四配位平面构型;阴离子与阳离子、水形成氢键,组成一个三维网络结构,但3个配合物的氢键模式不同。配合物在热稳定性、荧光性质上有一定差异。  相似文献   

20.
The reaction of [RuCl2(PPh3)3] and closo-[B10H10]2? with p-IPhCOOH in CH2Cl2 solution affords two para-iodobenzoate exo-cyclized 11-vertex closo-ruthenaborane clusters [(PPh3)(p-IPhCO2)2RuB10H8] (1) and [(PPh3)2ClRu(PPh3)(p-IPhCO2)RuB10H9]?···?CH2Cl2 (2) that have been characterized by elemental analysis, FT-IR, 1H and 13C?NMR spectra and single-crystal X-ray diffraction analysis. Both clusters are based on a closo-type C 2 v 1?:?2?:?4?:?2?:?2 RuB10 stack with the metal occupying the unique six-connected apical position. In 1, the metal center has three exo-polyhedral ligands: one triphenylphosphine and two native oxygen atoms of para-iodobenzoates. The other oxygen atoms of two para-iodobenzoates are additionally bonded to B(2) and B(3) atoms respectively, resulting in two exo-cyclic five-membered Ru–O–C–O–B rings and engendering a symmetrical conformation. For 2, the metal center also has three exo-polyhedral ligands, one triphenylphosphine and one para-iodobenzoate to form one exo-cyclic five-membered Ru–O–C–O–B ring. There is an additional exo-polyhedral ruthenium atom bonding to the {RuB10} center via a {Ru–Ru} linkage and two {RuH μ B} bridges resulting in one closo distorted exo-polyhedral Ru(1)–Ru(2)–B(2)–B(4) tetrahedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号