首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plant family Compositae is known to produce a set of unusual fattly acids in their seed oil. Saussurea, a genus of the Compositae is less studied in respect to the fatty acid compsition of their seed oil. Only Saussurea candicans was reported to contain crepenynic acid (33%) as seed oil component. In continuation of our exploration of the portential of wild oil seeds, fatty acids in seed oils of seven Saussurea species (S. amara, S. salicifolia, S. lipschitzii, S. pseudoalpina, S. pricei, S. parviflora, and S. dorogostaiskii) growing in Mongolia a were investigated by means of capillary GLC on capiallary columns of different selectivity (Silar 5 CP and BPX 70). γ-Linolenic acid was found at levels up to 11% of the consitituent fatty acids of Saussurea spp. seed oils. This is the first time that γ-Linolenic acid has been found in members of the plant family Compositae. Moreover, the number, position and configuration of the double bonds in γ-linolenic acid and that of other fatty acids was additionally confirmed by silver ion thin layer chromatography and infrared spectroscopy. The occurence and distribution of γ-linolenic acid, which has found considerable interest for pharmaceutical and dietary use, may be of chemotaxonomical significance in the plant family Compositae.  相似文献   

2.
Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15–18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.  相似文献   

3.
Reversed phase HPLC with short wavelength UV detection is a useful alternative to conventional separation systems, with RI detection, for the analysis of the triacylglycerols of highly unsaturated vegetable oils, including γ-linolenic acid-containing oils and technical drying oils. γ-Linolenic acid-containing triacylglycerols can be identified and separated from their α-linolenic analogs. The triacylglycerol fingerprints obtained by this technique from many γ-linolenic acid-containing oils and technical oils are highly characteristic, as is apparent from chromatograms obtained from the seed oils of Oenothera biennis, Borago officinalis, Ribes nigrum, Primula florindae, and Sapium sebiferum. Characteristic peak area ratios aid the identification of these oils, and estolide peaks are seen in Sapium seed kernel oils. The high detector response for triacylglycerols containing linoleate and/or linolenate residues may present additional advantages, e.g. in the detection of such triacylglycerols in olive oil.  相似文献   

4.
The oil contents of safflower seeds ranged from 23.08% to 36.51%. The major fatty acid of safflower oil is linoleic acid, which accounted for 55.1–77.0% in oils, with a mean value of 70.66%. Three types of tocopherols were found in safflower oil in various amount α-tocopherol, β-tocopherol and γ-tocopherol, ranged from 46.05 to 70.93 mg/100 g, 0.85 to 2.16 mg/100 g and trace amount to 0.45 mg/100 g oils, respectively. This research shows that both fatty acid and tocopherol contents differ significantly among the safflowers.  相似文献   

5.
The essential oil obtained by hydrodistillation from leaves of Anaxagorea brevipes was analysed by gas chromatography fitted with a flame ionisation detector (GC–FID) and coupled to mass spectrometry (GC–MS). Thirty one components were identified, representing around 75.7% of total oil. The major components were β-eudesmol (13.16%), α-eudesmol (13.05%), γ-eudesmol (7.54%), guaiol (5.12%), caryophyllene oxide (4.18%) and β-bisabolene (4.10%). The essential oil showed antimicrobial activity against Gram-positive bacteria and yeast with the MIC values between 25.0 and 100 μg/mL. The highest antiproliferative activity was observed for the oil against MCF-7 (breast, TGI = 12.8 μg/mL), NCI-H460 (lung, TGI = 13.0 μg/mL) and PC-3 (prostate, TGI = 9.6 μg/mL) cell lines, while against no cancer cell line HaCat (keratinocyte) the TGI was 38.8 μg/mL. The oil exhibited a small antioxidant activity assessed through ORAC-FL assay (517 μmol TE/g). This is the first report regarding the chemical composition and bioactivity of A. brevipes essential oil.  相似文献   

6.
An isocratic high performance liquid chromatographic method, with the application of C18 and C30 reverse-phase column and fluorescence detection, is described for the analysis of plastochromanol, tocotrienols and tocopherols in plant seed oils. The solvent systems have been optimized to obtain high resolution for all tocochromanols and relatively short analysis time. The use of reverse-phase columns for plastochromanol analysis, previously not reported, enables very sensitive and selective detection of plastochromanol which under the described separation conditions did not interfere with tocochromanols or any other compounds. The sample extraction method is fast, simple and highly efficient. The obtained results show that plastochromanol was present in most of the investigated seed oils. Its level was the highest in flax (17–30 mg/100 g oil), rape (8.5–9), camelina (4.3), peanut (1.95), corn (1.69) and grape (1.31) seed oils. Its level in the other investigated oils was below 1 mg/100 g oil, and only in sesame and coconut oils it was not detected. Tocotrienols were found in most of the oils but their content was usually very low (<<1 mg/100 g oil) with the exception of grape, milk thistle and corn oils where it reached >1 mg/100 g oil. Tocopherol content and isomer composition was within the earlier reported literature values for the investigated oils.  相似文献   

7.
Sterols in olive oils have been analyzed by liquid chromatography coupled to mass spectrometry with atmospheric-pressure chemical ionization in positive-ion mode. A simple procedure based on saponification and extraction of the compounds from olive oils was studied. Validation of the method included calibration and determination of recovery and repeatability was carried out. Good linearity was obtained up to 100 mg kg?1 for all the sterols studied except β-sitosterol, for which linearity was obtained up to 2,000 mg kg?1. Recovery ranged from 88 to 110%, detection limits from 0.9 to 3.1 mg kg?1, and precision was good. The method has been successfully used for analysis of sterols in different types of oil. The predominant sterol was β-sitosterol; other minor components, for example sitostanol and cholesterol, were also detected. Total sterol content depended on the type of oil, and ranged from 687 to 2,479 mg kg?1. Stigmasterol and the amount of erythrodiol plus uvaol can be used to distinguish between olive oil and seed oil.  相似文献   

8.
Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2–83.5%, with linoleic acid being the dominant fatty acid (62.4–72.5%), followed by oleic acid (10.8–22.7%) and palmitic acid (9.2–9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable.  相似文献   

9.
Gruszka  Jolanta  Kruk  Jerzy 《Chromatographia》2007,66(11):909-913

An isocratic high performance liquid chromatographic method, with the application of C18 and C30 reverse-phase column and fluorescence detection, is described for the analysis of plastochromanol, tocotrienols and tocopherols in plant seed oils. The solvent systems have been optimized to obtain high resolution for all tocochromanols and relatively short analysis time. The use of reverse-phase columns for plastochromanol analysis, previously not reported, enables very sensitive and selective detection of plastochromanol which under the described separation conditions did not interfere with tocochromanols or any other compounds. The sample extraction method is fast, simple and highly efficient. The obtained results show that plastochromanol was present in most of the investigated seed oils. Its level was the highest in flax (17–30 mg/100 g oil), rape (8.5–9), camelina (4.3), peanut (1.95), corn (1.69) and grape (1.31) seed oils. Its level in the other investigated oils was below 1 mg/100 g oil, and only in sesame and coconut oils it was not detected. Tocotrienols were found in most of the oils but their content was usually very low (<<1 mg/100 g oil) with the exception of grape, milk thistle and corn oils where it reached >1 mg/100 g oil. Tocopherol content and isomer composition was within the earlier reported literature values for the investigated oils.

  相似文献   

10.
Chemical composition of commercial Origanum compactum and Cinnamomum zeylanicum essential oils and the antifungal activity against pathogenic fungi isolated from Mediterranean rice grains have been investigated. Sixty-one compounds accounting for more than 99.5% of the total essential oil were identified by using gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). Carvacrol (43.26%), thymol (21.64%) and their biogenetic precursors p-cymene (13.95%) and γ-terpinene (11.28%) were the main compounds in oregano essential oil, while the phenylpropanoids, eugenol (62.75%), eugenol acetate (16.36%) and (E)-cinnamyl acetate (6.65%) were found in cinnamon essential oil. Both essential oils at 300 μg/mL showed antifungal activity against all tested strains. O. compactum essential oil showed the best antifungal activity towards Fusarium species and Bipolaris oryzae with a total inhibition of the mycelial growth. In inoculated rice grains at lower doses (100 and 200 μg/mL) significantly reduced the fungal infection, so O. compactum essential oil could be used as ecofriendly preservative for field and stored Valencia rice.  相似文献   

11.
This study utilised response surface methodology to optimise the conditions for the extraction of A. rugosa seeds oil (ARO). Single–factor experiment and response surface methodology (RSM) were performed to identify the extraction time, liquid–solid ratio and extraction temperature that provided the highest yield of ARO. The optimal extraction time, liquid–solid ratio and extraction temperature were 8 h, 4:1 mL/g and 55 °C. The fatty acids (FAs) content and oil yield obtained through the optimised impregnation–extraction process were 19.67 mg/g and 32.1%. These values matched well with the predicted values. Linolenic acid was identified to be the main active ingredient of ARO. The high–performance liquid chromatography–charged aerosol detection method presented here is fast and does not require derivatisation. Therefore, it could be used to quantitatively analyse the FAs present in ARO and applied to detect compounds with low or no ultraviolet response.  相似文献   

12.
Twenty compounds were detected in the essential oil of Rhanterium suaveolens representing 98.01% of the total oil content. Perillaldehyde (45.79%), caryophyllene oxide (24.82%) and β-cadinol (5.61%) were identified as the main constituents. In β-carotene–linoleic acid assay, both the oil and the methanol extract exhibited good lipid peroxidation inhibition activity, with IC50 values of 17.97 ± 5.40 and 11.55 ± 3.39 μg/mL, respectively. In DPPH and CUPRAC assays, however, the methanol extract exhibited a good antioxidant activity. The highest antibiofilm activity has been found 50.30% against Staphylococcus epidermidis (MU 30) at 20 μg/mL for essential oil and 58.34% against Micrococcus luteus (NRRL B-4375) at 25 mg/mL concentration for methanol extract. The in vitro anticholinesterase activity of methanol extract showed a moderate acetylcholinesterase inhibitory (IC50 = 168.76 ± 0.62 μg/mL) and good butyrylcholinesterase inhibitory (IC50 = 54.79 ± 1.89 μg/mL) activities. The essential oil was inactive against both enzymes.  相似文献   

13.
Physicochemical characteristics and fatty acid composition of Lasiococca comberi Haines (Euphorbiaceae), an endangered forest tree species, were determined for the first time. The oil, protein, crude fibre and carbohydrate contents in seeds were 41.5, 13.8, 22.2 and 11.6%, respectively. The refractive index, pH, specific gravity, saponification value, iodine value, peroxide value and p-anisidine value of seed oil were 1.4781, 6.4, 0.9, 178.4 mg KOH/g, 196 g I2/100 g of oil, 5.1 mEq O2/kg and 188.4, respectively. The predominant fatty acids were linolenic acid (65.3%), oleic acid (13.8%), linoleic acid (7.1%) and palmitic acid (5.3%). HPLC analysis revealed the presence of α-tocopherol (13.2 mg/100 g) and γ-tocopherol (6.3 mg/100 g) as the major tocopherols. The results indicated that L. comberi seed oil can be classified as drying oil having possible applications in different industries and as an important dietary source of omega-3 fatty acids.  相似文献   

14.
In this study, biological properties of the essential oil isolated from seeds of Foeniculum vulgare (F. vulgare) were evaluated. GC-MS analysis revealed Trans-Anethole (80.63%), L-Fenchone (11.57%), Estragole (3.67%) and Limonene (2.68%) were the major compounds of the essential oil. Antibacterial activity of the essential oil against nine Gram-positive and Gram-negative strains was studied using disc diffusion and micro-well dilution assays. Essential oil exhibited the antibacterial activity against three Gram-negative strains of Pseudomonas aeruginosa, Escherichia coli, and Shigella dysenteriae. The preliminary study on toxicity of seed oil was performed using Brine Shrimp lethality test (BSLT). Results indicated the high toxicity effect of essential oil (LC50 = 10 μg/mL). In vitro anticancer activity of seed oil was investigated against human breast cancer (MDA-Mb) and cervical epithelioid carcinoma (Hela) cell lines by MTT assay. Results showed the seed oil behave as a very potent anticancer agent with IC50 of lower than 10 μg/mL in both cases.  相似文献   

15.
In order to investigate the composition of borage (Borago officinalis L.) seed oil, this research was performed under the field conditions at Shahriyar and Garmsar zones, Iran during the 2012 planting year. The oil yield of borage was 31.46% and 33.7% at Shahriyar and Garmsar zone, respectively, and nine and eight fatty acids were identified in the seed oil of borage at Shahriyar and Garmsar, respectively – palmitic, linoleic, stearic and γ-linolenic acids were dominant in the seed oil of borage from both zones. Unsaturated fatty acid content was more than the saturated fatty acids in both zones. The ratio of linoleic acid and α-linolenic acid in the borage cultivated at Shahriyar and Garmsar zones was 2.13 and 2.29. The fatty acid profile of Garmsar borage, oleic and oleic/linoleic acid ratio, increased. Locations with different ecological conditions resulted in changes in both seed oil content and fatty acid profile of borage.  相似文献   

16.
Two new monoterpene Ducrosin A (1) and sesquiterpene Ducrosin B (2) were isolated along with three known compounds, stigmasterol (3) and two furanocoumarins (4 and 5), from the dichloromethane extract of the seeds of Ducrosia anethifolia (DC.) Boiss. Their structures were determined using extensive 1D and 2D NMR, (ES)-HRMS and IR spectroscopic analyses and by comparison with literature data. Gas chromatography analysis of the fatty acids (FAs) of D. anethifolia seed oils (DAOs) showed high percentages of elaidic acid (C18:1 Δ9t) 65% and oleic acid (C18:1 Δ9c) 15%. The total tocopherol (tocols) content in DAOs was found to be 164 mg/100 g. The cytotoxic effect of the isolates was also evaluated using the MTT assay against the HCT-116 and SKOV-3 cell lines. The results showed that compound 2 was the most cytotoxic agent followed by compounds 1 and 4, which has an epoxide moiety that most likely contributes to its activity.  相似文献   

17.
In the present study, the profiling of 17 fatty acids (FAs) in avocado seed and pulp was investigated. The fatty acids were extracted with vortex-assisted extraction, methyl esterified and finally preconcentrated by dispersive liquid–liquid microextraction. The preconcentrated fatty acid methyl esters (FAMEs) were analyzed using gas chromatography–mass spectrometry (GC–MS) to obtain qualitative and quantitative information. The GC–MS data were analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method to overcome general chromatographic problems such as overlapped peaks, background interference and peak shifts. The calibration data were prepared using pure analytical information obtained by MCR-ALS. The linear dynamic ranges and regression coefficients (R 2) for FAMEs were in the range of 0.19–65 mg L?1 and 0.990–0.999, respectively. The relative standard deviation (RSD%) for determination of FAs in avocado seed and pulp was 0.17–8.84 and 0.64–17.93, respectively. The main FAs in the avocado pulp were: oleic acid (74.25 g Kg?1), linoleic acid (26.87 g Kg?1), palmitic acid (26.02 g Kg?1), palmitoleic acid (1.22 g Kg?1) and stearic acid (0.05 g Kg?1). And, the main FAs in the avocado seed were: linoleic acid (1.09 g Kg?1), palmitic acid (0.47 g Kg?1), oleic acid (0.33 g Kg?1), linolenic acid (0.12 g Kg?1), and palmitoleic acid (0.04 g Kg?1).  相似文献   

18.
The present study was designed to examine the chemical composition of the essential oil, in vitro antioxidant activity and total phenolic and flavonoid content of extracts from plant parts (leaf, flower and stem) of Teucrium alyssifolium. The principle components of the essential oil were trans-β-caryophyllene (16.87%), ar-curcumene (11.43%) and bisabolene (11.06%), representing 39.36% of the oil. The total phenolic contents ranged between 13.99 and 41.54 mg of GAE/g of extract. The concentrations of flavonoids varied from 16.82 to 49.52 mg of Ru/g of extract. Antioxidant activity was determined in vitro using DPPH reagent and expressed as concentration of each extract required to inhibit radical by 50% (IC50) values that ranged from 13.52 to 132.55 μg/ml. Our results have indicated that water extract of T. alyssifolium (part leaf) with a total content of polyphenols (41.54 mg of GAE/g) and an IC50 of 13.52 μg/ml is more antioxidant.  相似文献   

19.
The essential oils from Origanum dictamnus, Origanum libanoticum and Origanum microphyllum were analysed by GC-MS, finding carvacrol, p-cymene, linalool, γ-terpinene and terpinen-4-ol as major components. The antioxidant activity by the DPPH and FRAP tests and the antiproliferative activity against two human cancer cell lines, LoVo and HepG2, were investigated, showing that the essential oil of O. dictamnus was statistically the most inhibitory on both the cell lines, while all the oils exerted a weak antioxidant activity. Furthermore, the samples were tested against 10 Gram-negative and Gram-positive bacteria; all the oils were active on Gram-positive bacteria but O. dictamnus essential oil was the most effective (MIC = 25–50 μg/mL), showing also a good activity against the Gram-negative Escherichia coli (MIC = 50 μg/mL). Data suggest that these essential oils and particularly O. dictamnus oil could be used as valuable new flavours with functional properties for food or nutraceutical products.  相似文献   

20.
Lepidium sativum is cultivated mainly for the edible oil from its seeds, and considered as an unutilized and neglected crop despite its important properties. Its oil fraction is used to produce soap and stabilize linseed oil when it is mixed with wild mustard seed oil. Once converted into fatty acid methyl esters, it represents a good substitute for imported petroleum diesel after alkaline transesterification reaction. In the current study, Lepidium sativum seeds cultivated in Tunisia and the physicochemical properties and nutrient profile of its cold pressed seed oil were investigated. The antioxidant, antibacterial, and anti-inflammatory activities of the above oil were also assessed. Lepidium sativum seed oil was abundant in both linolenic (35.59 ± 1.9%) and oleic (21.14 ± 0.63%) acids, and high amounts of β-sitosterol (42.57 ± 2.96 mg/100 g), campesterol (20.04 ± 1.4 mg/100 g) and Δ 5,24 stigmastadienol (11.82 ± 0.45 mg/100 g) were detected. The total tocopherol content of Lepidium sativum seed oil reached 136.83 ± 7.6 mg/100 g with a predominance of γ-tocopherol (86.23%). Its seed oil exhibited an IC50 of 10.33 ± 0.05 mg/mL and a radical scavenging activity of 415.6 ± 40 Trolox Equivalent Antioxidant Capacity (TEAC) for the DPPH and the ABTS assays, respectively. While the thermal analysis proved a high thermal stability of Lepidium sativum seed oil, that of eight bacteria and one fungal strain showed no noticeable bacterial or antifungal effects. It was also revealed that Lepidium sativum seed oil held a remarkable anti-inflammatory activity. Hence, the obtained results evidenced remarkable chemical, antioxidant and anti-inflammatory properties of Lepidium sativum seed oil, which might potentially be promising for enhancing human health and preventing age-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号