首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-Mev proton beams generated by target normal sheath acceleration (TNSA) during the interaction of an ultra intense laser beam (I≥1019 W/cm2) with a thin metallic foil (thickness of the order of a few tens of microns) are particularly suited as a particle probe for laser plasma experiments. The proton imaging technique employs a laser-driven proton beam in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in such experiments. The proton probing technique has been applied in experiments of relevance to inertial confinement fusion (ICF) such as laser heated gasbags and laser-hohlraum experiments. The data provides direct information on the onset of laser beam filamentation and on the plasma expansion in the hohlraum’s interior, and confirms the suitability and usefulness of this technique as an ICF diagnostic.  相似文献   

2.
The great progress in high-peak-power laser technology has resulted recently in the production of ps and subps laser pulses of PW powers and relativistic intensities (up to 1021 W/cm2) and has laid the basis for the construction of multi-PW lasers generating ultrarelativistic laser intensities (above 1023 W/cm2). The laser pulses of such extreme parameters make it possible to produce highly collimated beams of electrons or ions of MeV to GeV energies, of short time durations (down to subps) and of enormous currents and current densities, unattainable with conventional accelerators. Such particle beams have a potential to be applied in numerous fields of scientific research as well as in medicine and technology development. This paper is focused on laser-driven generation of fast ion beams and reviews recent progress in this field. The basic concepts and achievements in the generation of intense beams of protons, light ions, and multiply charged heavy ions are presented. Prospects for applications of laser-driven ion beams are briefly discussed.  相似文献   

3.
Ion acceleration by ultrashort laser pulses of very high intensities of the order 1022?W/cm2 is studied by two-dimensional Particle-In-Cell simulations. We show that laser normal incidence is preferred for such high intensities. For linearly polarized laser radiation, higher maximum proton/ion energies are achieved than for circular polarization. For linear polarization, the transition from the target normal sheath acceleration to the acceleration on the target front side by the radiation pressure is analyzed in detail. The transition intensity is increasing with the target thickness. The radiation pressure dominated regime leads to considerably higher number of accelerated protons and thus to a higher acceleration efficiency.  相似文献   

4.
fs pulsed lasers at an intensity of the order of 1018 W/cm2, with a contrast of 10−5, were employed to irradiate thin foils to study the target-normal-sheath-acceleration (TNSA) regime. The forward ion acceleration was investigated using 1/11 µm thickness foils composed of a metallic sheet on which a thin reduced graphene oxide film with 10 nm thickness was deposited by single or both faces. The forward-accelerated ions were detected using SiC semiconductors connected in time-of-flight configuration. The use of intense and long pre-pulse generating the low contrast does not permit to accelerate protons above 1 MeV because it produces a pre-plasma destroying the foil, and the successive main laser pulse interacts with the expanding plasma and not with the overdense solid surface. Experimental results demonstrated that the maximum proton energies of about 700 keV and of 4.2 MeV carbon ions and higher were obtained under the condition of the optimal acceleration procedure. The measurements of ion energy and charge states confirm that the acceleration per charge state is measurable from the proton energy, confirming the Coulomb–Boltzmann-shifted theoretical model. However, heavy ions cannot be accelerated due to their mass and low velocity, which does not permit them to be subjected to the fast and high developed electric field driving the light-ion acceleration. The ion acceleration can be optimized based on the laser focal positioning and on the foil thickness, composition, and structure, as it will be presented and discussed.  相似文献   

5.
An intense laser radiation (1012 to 1011 W/cm−2) focused on the solid target creates a hot (≥1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ=0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼1011 W/cm−2.  相似文献   

6.
High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015?W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1?MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.  相似文献   

7.
A new scheme is proposed for proton and light-ion acceleration to relativistic energies by superstrong laser radiation interacting with a structured plasma target. The proposal consists in the use of two-component targets consisting of heavy and light ions, where an ambipolar field is formed under the action of the ponderomotive force of incident radiation, and, in contrast to the traditional schemes, acceleration starts from the front boundary of the layer. It is shown that, for the optimized target parameters, monoenergetic GeV ion beams can be produced for radiation pulse intensities on the order of 1021−1022 W/cm2.  相似文献   

8.
We consider a possibilty to use an echelon of mutually coherent laser pulses generated by the emerging CAN (Coherent Amplification Network) technology for direct particle acceleration in periodic plasma structures. We discuss resonant and free streaming configurations. The resonant plasma structures can trap energy of longer laser pulses but are limited to moderate laser intensities of about 1014?W/cm2 and are very sensitive to the structure quality. The free streaming configurations can survive laser intensities above 1018?W/cm2 for several tens of femtoseconds so that sustained accelerating rates well above TeV/m are feasible. In our full electromagnetic relativistic particle-in-cell (PIC) simulations we show a test electron bunch gaining up to 200?GeV over a distance of 10.2?cm only.  相似文献   

9.
A gold target has been irradiated with a Q-switched Nd:Yag laser having 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and a maximum power density of the order of 1010?W/cm2. The laser–target interaction produces a strong gold etching with production of a plasma in front of the target. The plasma contains neutrals and ions having a high charge state. Time-of-flight (TOF) measurements are presented for the analysis of the ion production and ion velocity. A cylindrical electrostatic deflection ion analyzer permits measurement of the yield of the emitted ions, their charge state and their ion energy distribution. Measurements indicate that the ion charge state reaches 6+ and 10+ at a laser fluence of 100?J/cm2 and 160?J/cm2, respectively. The maximum ion energy reaches about 2?keV and 8?keV at these low and high laser fluences, respectively. Experimental ion energy distributions are given as a function of the ion charge state. Obtained results indicate that electrical fields, produced in the plume, along the normal to the plane of the target surface, exist in the unstable plasma. The electrical fields induce ion acceleration away from the target with a final velocity dependent on the ion charge state. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the authors have corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

10.
The fs laser facility in Bordeaux, delivering an intensity of 1018 W/cm2 at normal incidence on thin foils, has been used to induce forward electron and ion acceleration in target-normal-sheath-acceleration (TNSA) regime. Micrometric thin foils with different composition, thickness, and electron density, were prepared to promote the charge particle acceleration in the forward direction. The plasma electron and ion emission monitoring were performed on-line using SiC semiconductor detectors in time-of-flight (TOF) configuration and gaf-chromics films both covered by thin absorber filters. The experiment has permitted to accelerate electrons and protons. A special attention was placed to detect relativistic hot electrons escaping from the plasma and cold electrons returning to the target position. The electron energies of the order of 100 keV and of about 1 keV were detected as representative of hot and cold electrons, respectively. A high cold electron contribution was measured using low-contrast fs laser, while it is less evident using high-contrast fs lasers. The charge particle acceleration depends on the laser parameters, irradiation conditions, and target properties, as will be presented and discussed.  相似文献   

11.
We demonstrate the instability-free ion acceleration regime by introducing laser control with two parallel circularly polarized laser pulses at an intensity of I = 6.8 × 1021?W/cm2, normally incident on a hydrogen foil. The special structure of the equivalent wave front of those two pulses, which contains Gaussian peaks in both sides and a concavity in the centre (2D), can suppress the transverse instabilities and hole boring effects to constrain a high density ion clump in the centre of the foil, leading to an acceleration over a long distance and gain above 1GeV/u for the ion bunches.  相似文献   

12.
A study of Ti laser irradiation and thin film deposition produced by an Nd:Yag pulsed laser is presented. The laser pulse, 9?ns width, has a power density of the order of 1010?W/cm2. The titanium etching rate is of the order of 1?µg/pulse, it increases with the laser fluence and shows a threshold value at about 30?J/cm2 laser fluence. The angular distribution of ejected atoms (neutrals and ions) is peaked along the normal of the target surface. At high fluence, the fractional ionization of the plasma produced by the laser is of the order of 10%. Time-of-flight measurements demonstrate that the titanium ions, at high laser fluence, may reach kinetic energies of about 1?keV. Obtained results can be employed to produce energetic titanium ions, to produce coverage of thin films of titanium and to realize high adherent titanium-substrate interfaces. The obtained results can be employed to produce energetic titanium ions, to produce a coverage of thin titanium films on polymers, and to realize highly adherent titanium–substrate interfaces.  相似文献   

13.
Proton acceleration using high-intensity laser pulses, at 1016 W/cm2 was studied irradiating different types of thin metal and plastic targets having 1-micron thickness. The maximization of the proton energy process was investigated optimizing the laser parameters, the irradiation conditions and the target properties. Employing 600–700 J laser pulse energy, a focalization inducing self-focusing effects and using targets with optimized thickness, it was possible to accelerate protons up to energies of above 8 MeV. The time-of-flight diagnostics has allowed to monitor the plasma properties and to control the ion acceleration process.  相似文献   

14.
A giant optical nonlinearity of self-focusing type in the oriented mesophase of nematic liquid crystals (NLC) due to the director reorientation under the action of a light wave field is predicted. Self-focusing of He-Ne laser radiation with power ~10?2 W and power density ~50 W/cm2 in a planar oriented 60 μm thick NLC layer has been carried out experimentally. The measured value of the nonlinearity effective constant ?2 = 0.07 cm3/erg corresponds to theoretical predictions, and turns out to be larger than the CS2 nonlinearity by ? 109 times.  相似文献   

15.
A new scheme is proposed for proton and light-ion acceleration to relativistic energies by superstrong laser radiation interacting with a structured plasma target. The proposal consists in the use of two-component targets consisting of heavy and light ions, where an ambipolar field is formed under the action of the ponderomotive force of incident radiation, and, in contrast to the traditional schemes, acceleration starts from the front boundary of the layer. It is shown that, for the optimized target parameters, monoenergetic GeV ion beams can be produced for radiation pulse intensities on the order of 1021−1022 W/cm2. Original Russian Text ? A.V. Korzhimanov, A.A. Gonoskov, A.V. Kim, A.M. Sergeev, 2007, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 9, pp. 662–669.  相似文献   

16.
In the last decade or so, an evolution in experimental relativistic laser-plasma physics has led to highly sophisticated lasers which are now capable of generating ultra-short pulses and can be focused to intensities in excess of 1021 W cm-2. The laser interaction with solid or gas targets can generate collimated beams of highly energetic electrons, protons and ions. These high-intensity laser systems, therefore, turn out to be versatile and powerful sources of radiation and high-energy particles, without recourse to large-scale facilities such as nuclear reactors or particle accelerators. The potential to induce various kinds of nuclear reactions with laser-induced radiation fields has been demonstrated at several laboratories in recent years. The present paper lays out a comprehensive overview of nuclear reactions induced by high-intensity laser matter interactions. Mechanisms for electron, proton and ion acceleration, in addition to secondary bremsstrahlung, positron and neutron production, are addressed, with a focus on the types of nuclear reactions that are possible and potential applications. Discussion of the extrapolation of these processes and applications to the next generation of table-top lasers under construction is also presented.  相似文献   

17.
We realized a series of experiments to study the physics of laser–plasma interaction in an intensity regime of interest for the novel “Shock Ignition” approach to Inertial Fusion. Experiments were performed at the Prague Asterix Laser System laser in Prague using two laser beams: an “auxiliary” beam, for pre-plasma creation, with intensity around 7?×?1013?W/cm2 (250?ps, 1ω, λ?=?1315?nm) and the “main” beam, up to 1016?W/cm (250?ps, 3ω, λ?=?438?nm), to launch a shock. The main goal of these experiments is to study the process of the formation of a very strong shock and the influence of hot electrons in the generation of very high pressures. The shock produced by the ablation of the plastic layer is studied by shock breakout chronometry. The generation of hot electrons is analyzed by imaging Kα emission.  相似文献   

18.
Non-equilibrium plasma was obtained by irradiating Al foils in vacuum with a femtosecond (fs) laser at intensities of the order of 1018 W/cm2. Protons and other light ions were accelerated in the forward direction by using the target-normal-sheath acceleration regime. Time-of-flight technique was employed to measure the ions' kinetic energy using SiC detectors placed at known distances and angles. The ion acceleration was monitored under different conditions of laser focal position, laser pulse energy, and laser contrast. The target was irradiated using different thicknesses and anti-reflecting graphene films. By optimizing the laser parameters, irradiation conditions, and target properties, it was possible to accelerate up to 2.3 MeV per charge state, as will be presented and discussed.  相似文献   

19.
The present work highlights swift heavy ion irradiation-induced shape evolution of gadolinium oxide (Gd2O3) nanorods synthesized via a sol-hydrothermal route. Upon dispersing Gd2O3 nanorods in the polyvinyl alcohol matrix, thin solid films were cast on borosilicate glass substrates. The films were then exposed to 80?MeV carbon-ion irradiation, while fluence was varied in the range of 1×1011–3×1012?ions/cm2. The post analyses were carried out by using X-ray diffraction, high resolution transmission electron microscopy (TEM) and Raman spectroscopy studies. An apparently observable shortening of length (L) and diameter (D) of the nanorods can be revealed through the TEM imaging analyses. Moreover, while exhibiting an aspect ratio (L/D) between 3.3 and 4.7, the nanorods were found to exist in the form of bunching at higher fluences. The irradiation-induced tamarind-like shape evolution at higher fluences was attributed to the overlapping of ion impacts on certain regions of the nanorods. The most intense Raman active peak of the pristine sample located at ~360?cm?1 was seen to experience blue-shifting (~375?cm?1) when irradiated at the highest fluence (~3×1012?ions/cm2). An altered shape evolution of a thermally and mechanically stable oxide system by the energetic ion impact would bring in new insights as regards construction of surface patterns and their potential use in miniaturized devices.  相似文献   

20.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号